

MODEL ESP-D SYSTEM INSTALLATION, OPERATION & MAINTENANCE MANUAL

Central Air Conditioning Series 2 to 5 Tons Fan Coil Unit/Air Supply Components

SECTION 1: INTRODUCTION

SpacePak System Design	2
Code Compliance	2
Air Distribution Requirements	2
Air Distribution Components	З
Warranty Information	5
Shipment of Unit	5

SECTION 2: SYSTEM INSTALLATION

Step 1: Locating The Unit	6
Step 2: Cutting Return Air Opening	8
Step 3: Attaching Supply Air Plenum Adaptor	9
Step 4: Setting The Unit	11
Step 5: Connecting Refrigerant Lines	11
Step 6: Installing The Condensate Trap & Line	12

Step 7: Wiring The Unit	12
Step 8: Installing Air Distribution Components	14
SECTION 3: START UP & OPERATION	
Sequence Of Operation	18
Prior To Start-Up	18
System Start-Up & Adjustments	18
Charging Cooling Only Systems	18
Factors Affecting the Balance of the System	19
SECTION 4: MAINTENANCE	
Before Each Cooling Season	20
If System Fails To Operate	20
Troubleshooting Guide	21-25
Service/Troubleshooting Form	26
Parts List	27

Section 1: INTRODUCTION

The following terms are used throughout this manual to bring attention to the presence of potential hazards or to important information concerning the product:

A DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death, serious injury or substantial property damage.

A WARNING Indicates an imminently hazardous situation which, if not avoided, could result in death, serious injury or substantial property damage.

▲ **CAUTION** Indicates an imminently hazardous situation which, if not avoided, may result in minor injury or property damage.

NOTICE: Used to notify of special instructions on installation, operation or maintenance which are important to equipment but not related to personal injury hazards.

SPACEPAK SYSTEM DESIGN

SpacePak is a hi-velocity central air conditioning system which utilizes a conventional outdoor condensing unit matched with the indoor Model ESP-D fan coil unit to provide conditioned air through the specially-designed, pre-fabricated, pre-insulated flexible duct system. The system and its basic components operate the same as in any conventional air-to-air cooling system.

The SpacePak system is covered by the following U.S. Patents: 3,507,354; 3,575,234; 3,596,936; 3,605,797; 3,685,329; 4,045,977; 4,698,982; 926,673 and Canadian Patents: 891,292; 923,935; 923,936.

CODE COMPLIANCE

Fan coil unit installation must conform to the requirements of the local authority having jurisdiction or, in the absence of such requirements, to the National Board of Fire Underwriters regulations. Fan coil unit meets ETL listing requirements.

All electrical wiring must be in accordance with the National Electrical Code ANSI/NFPA No. 70-latest edition and any additional state or local code requirements. If an external electrical source is utilized, the fan coil unit, when installed, must be electrically grounded.

NOTICE: It is a requirement of the International Mechanical Code (307.2.3) to install a secondary drain or an auxiliary drain pan where damage to any building components will occur as a result of overflow from the equipment drain pan or stoppage in the condensate drain piping from a cooling or an evaporator coil.

AIR DISTRIBUTION SYSTEM COMPONENT REQUIREMENTS

Air distribution components installation must conform to the requirements of local authority having jurisdiction or, in the absence of such requirements, to the National Fire Protection Association 90A or 90B.

Do not begin the installation of the system without a system layout and material take-off. If a layout plan is not already available and room terminator requirements determined, then refer to the SpacePak Application Manual, SP9, to complete this information. A description of air distribution system components is shown in Figure 1.1.

RETURN AIR BOX (SPC-1D, AC-RBF-3, SPC-3D): Each includes filter grill with metal frame, permanent filter, and 2 clamp bands. SPC-1D is for ESP-2430D. AC-RBF-3 is for ESP-3642D and SPC-3D is for ESP-4860D.

RETURN AIR DUCT (SPC-4,5, & 6): Flexible, 10 feet long with round shape. SPC-4 (15" dia.) for ESP-2430D. SPC-5 (19" dia.) for ESP-3642D and SPC-6 (24" dia.) is for ESP-4860D.

PLENUM DUCT & COMPONENTS: May be round or square, fiberboard or sheet metal duct types as specified by the installing contractor. Above layout is shown as an illustrative reference only.

SUPPLY TUBING (SPC-25-100): Flexible, insulated, 2" I.D. and 3 ¹/₄" O.D. Each section is 100 feet long.

R8 SUPPLY TUBING (AC-ST8-50): Flexible, R8 insulated, 2" I.D. and 6-1/4" O.D. Each section is 50 feet long.

INSTALLATION KITS: Each contains a specified amount of sound attenuating tubes, kwik-connects, plenum take-offs, terminator plates, winter supply air shut-offs and balancing orifices to complete installation of room outlets.

ADDITIONAL COMPONENTS (not shown)

WINTER SUPPLY SHUT OFF (SPC-42-10): To keep moisture from collecting in ductwork during winter months.

KWIK CONNECT WALL ELBOW (AC-KCWE): To allow for wall terminations in 2" X 4" stud spaces.

PLIERS (SPC-72): To assure full setting of all clips (fasteners) in plenum take-off.

SECONDARY DRAIN PAN: Specifically sized for SpacePak horizontal fan coil units. Constructed of durable polyethylene. Fan coil unit sets directly on top and can be installed with threaded rod.

FIGURE 1.1: AIR DISTRIBUTION SYSTEM COMPONENTS

Plenum Duct

The plenum duct can be run in practically any location accessible for the attachment of the supply tubing (see suggested layouts in Figure 1.2). The plenum is normally located in the attic or basement, and it is usually more economical to run the plenum where it will appreciably shorten the lengths of two or more supply runs.

In some two-story split level homes, it may be advantageous to go from one level to another with the plenum duct. Whenever necessary, either between floors or along the ceiling, the small size of the plenum makes it easy to box in. The fan coil unit is designed to operate with a total external static pressure of 1.5 inches of water column (minimum 1.2 - maximum 1.5). Excessive static pressure increases the air flow in individual runs and may cause some or all terminators to be noisy.

For systems with a tee installed as on Unit No. 1 (Figure 1.3), the best results are obtained if not more than 60% of the total number of system outlets are attached to any one branch of the tee. For systems with a tee installed as on Unit No. 2 (Figure 1.3), not more than 30% of the total number of system outlets should be attached to the perpendicular branch of the tee.

The larger system capacities (ESP-4860D) are effected more by higher system static pressure than the smaller systems. The four and five ton system should be considered and handled as two separate smaller units. Installation of the plenum tee closer than the minimum indicated in Fig. 1.3 will reduce performance of the system. No supply runs should be installed between unit outlet and this tee. Static readings on system should be taken before tee.

Supply Tubing

In the case of two-story or split-level applications, supply tubing may run from one story to another. It is small enough to go in stud spaces, but this is often difficult in older homes because of hidden obstructions in stud spaces. It is more common to run the supply tubing from the attic down through second story closets to the first story terminators.

Supply tubing runs in the corners of the second story rooms can be boxed in and are hardly noticeable since overall diameter is only $3^{1/4"}$.

Room Terminators

Terminators should be located only in the ceiling or floor for vertical discharge. Horizontal discharge is acceptable, but is sometimes more difficult to install. Two excellent spots for horizontal discharge are in the soffit area above kitchen cabinets (see Figure 1.4) and in the top portion of closets (see Figure 1.5).

Terminators should always be out of normal traffic patterns to prevent discharge air from blowing directly on occupants. And they should not be located directly above shelves or large pieces of furniture. Outside wall or corner locations are recommended if the room has more than one outside wall. Locating terminators away from interior doors prevents short cycling of air to the return air box.

WARRANTY INFORMATION

Refer to the Limited Warranty published on the back page of this manual.

SHIPMENT OF UNIT

Each fan coil unit is shipped in a single carton. Packed with the unit, there are vibration isolation pads, a condensate trap assembly, a length of 6" wide foil faced fiberglass insulation, and a factory installed primary float switch.

SECTION 2: SYSTEM INSTALLATION

NOTICE: Before proceeding with the installation, we recommend reading through this section of the manual for an overall understanding of the air conditioning fan coil unit and air distribution system component installation procedures.

STEP 1: LOCATING THE UNIT

The fan coil unit may be installed in an unconditioned space (as long as it is protected from the weather) such as an attic, garage or crawlspace...or a conditioned space such as a basement, closet or utility room (see dimensions in Figure 2.2).

The fan coil unit is shipped in a horizontal air flow arrangement, but can be easily field-converted to a

vertical air flow arrangement as detailed on page 9 and Figures 2.9A and 2.9B.

When selecting a location, consider the locations (as shown in Figures 2.4, 2.5 and 2.6) of the return air box; routing of the plenum duct, supply tubing, refrigerant lines, condensate drain line; and all recommended clearances (see Figures 2.2).

NOTICE: It is a requirement of the International Mechanical Code (307.2.3) to install a secondary drain or an auxiliary drain pan where damage to any building components will occur as a result of overflow from the equipment drain pan or stoppage in the condensate drain piping from a cooling or an evaporator coil. Follow local code requirements.

			Connections				Recommended	
	System				Cond.	Return	Condensi	ng Unit
Model	capacity (Nom. Tons)	Electrical Characteristics	Suction Line	Liquid Line	Drain (NPT)	Inlet (Dia.)	Capacity (MBH)	Min SEER
ESP-2430D	2 - 2-1/2	1-60-208/230	7/8"	3/8"	3/4"	15"	24 to 30	12+
ESP-3642D	3 - 3-1/2	1-60-208/230	7/8"	3/8"	3/4"	19"	36 to 42	12+
ESP-4860D	4 & 5	1-60-208/230	7/8"	3/8"	3/4"	24"	48 to 60	12+

			Blower					Coil		
Model	System capacity (Nom. Tons)	Std. CFM @ 1.5" W.C.	Wheel Dia. and Width	Motor HP	Motor Type	F.L. Amps	No. of Rows Deep	Holding Charge (Dry Nitrogen)	Flow Control Type	Ship. Wt. (Ibs)
ESP-2430D	2 - 2-1/2	550	9" x 5"	1/3	PSC	1.8	6	7 psi	Exp. Valve	117
ESP-3642D	3 - 3-1/2	850	9" x 5"	1/2	PSC	2.8	6	7 psi	Exp. Valve	139
ESP-4860D	4 & 5	1150	9" x 6-3/8"	1	PSC	3.6	6	7 psi	Exp. Valve	166

FIGURE 2.1: MODEL ESP-D SPECIFICATIONS

STEP 2: CUTTING RETURN AIR OPENING

Select exact location for return air box. Avoid installing box in dining room, living room, kitchen, etc., unless return air duct can be installed with at least two 90° bends (accomplished by splicing two return air ducts together.)

For attic installations to raise fan coil unit up through opening, cut return air opening $14^{1}/_{2}^{"}$ wide by 27" long for the ESP-2430D, $14^{1}/_{2}^{"}$ wide by $31^{1}/_{2}^{"}$ long for the ESP-3642D* and $14^{1}/_{2}^{"}$ wide by $36^{1}/_{2}^{"}$ long for the ESP-4860D. These openings will accomodate the return air box with sufficient frame lip to cover the opening (see Figure 2.7).

*NOTICE: The electrical box must be removed from the ESP-3642D unit to fit through hole cut out. Refer to the "Installation Tip" supplied with the return air box. If joists are on 16" centers, the $14^{1/2}$ " width of the return air box should fit between successive joists. Where joists run in the opposite direction, or to properly center the return, it may be necessary to cut joists and install headers.

For all wall return applications, cut the return air opening to accomodate the return air box according to the same dimensions. Remember, location of opening must allow for a 90° bend in the return air duct.

Check the opening for proper fit of the return air box. Do not install the return air box until the installation of the entire SpacePak system is completed, if you want to fit materials up through this hole.

STEP 3: ATTACHING SUPPLY AIR PLENUM ADAPTOR

NOTICE: If the unit is to be located in the attic and installed through the ceiling joists, attach the supply plenum adaptor in the attic.

A. HORIZONTAL DISCHARGE:

Refer to duct installation instructions supplied with fan coil unit.

B. TO CONVERT TO VERTICAL DISCHARGE: Refer to Figure 2.9A & 2.9B

Tools required: $^{5/16}{"}$ box wrench, $^{5/16}{"}$ nut driver, drill and $^{1/4}{"}$ drill bit.

Refer to Figure 2.9A for Steps 2 to 5a.

1. Place unit horizontally on a flat surface.

2. Remove side access panels, the cover plate from the top panel and top of unit.

3. Remove the two screws securing the front panel flange to the blower housing.

4. Remove the two screws attaching the blower housing to the motor support channel flange.

5a. Remove the six (6) screws attaching the motor mounting base to the motor support channel.

Refer to Figure 2.9B for Steps 5b to 14.

5b. Shift the motor mounting base (and blower housing) back towards the coil to the second set of mounting lugs on the motor support channel. When in position, reattach the motor mounting base to the motor support channel with the six screws.

6. Rotate the blower housing 90° to face upwards. Align the hole in the side blower housing with the upper slot in the motor support channel flange and join the two parts with one of the previously removed screws. 7. Attach the two flanges supplied, one to each side of the blower housing outlet. Align the holes in the flange with the holes in the housing and attach with screws supplied.

8. Drill out the four (4) screw holes in the top panel that secured the removed cover plate to $\frac{1}{4}$ " inch diameter.

9. Make a 2" long cut in the top panel insulation from each corner of the opening toward the sides of the unit to prepare for **Step 11**.

10. Reposition the top panel on the unit **taking care** to straddle the evaporator coil with coil support brackets and to replace all screws.

11. Fold back the top insulation flaps created in **Step 9** and position the flanges on the blower housing discharge against the top panel. Place the supply air plenum adaptor over the opening. Align the holes in the adaptor, gasket and top panel with the blower housing flange holes and secure with the screws provided. Reposition the top insulation flaps over the blower housing flanges. The insulation must be in place to prevent condensation forming on the top panel.

12. Check that the blower wheel is centered in the inlet and discharge of the blower housing. To make any adjustments, loosen the 4 bolts securing the motor, shift the motor as required and refasten the 4 bolts.

13. Place the coverplate removed from the top panel over opening in the front panel and screw in place.

NOTICE: Check that all inside cabinet surfaces are covered with insulation, add insulation if required. An uninsulated panel will "sweat" and condensate will form on the cabinet.

14. Replace the side access panels.

STEP 4: SETTING THE UNIT

Construct a platform for the fan coil unit, as shown in Figure 2.10. The platform can be constructed of 2x4 (minimum), 2x6, 2x8 and 2x10 lumber, as necessary to achieve proper pitch of ¼" per foot for the condensate drain line. Figure 2.11 shows the approximate normal allowable run of condensate piping as a function of the framing lumber used for platform construction. The platform covering should be ½" plywood minimum.

Attach vibration isolation pads (supplied inside fan coil unit) to platform covering as shown in Fig. 2.10.

Secure the platform to the joist or floor, depending on location selected for the fan coil unit. Make sure platform is level.

For locations where the fan coil unit will be suspended, suspend platform from overhead by ¹/₄" threaded rods.

NOTICE: Leave room on sides for servicing.

For installations with a return air box and return air duct, set fan coil unit on the platform with the elliptical opening facing in the direction of the return air opening. The supply air plenum adaptor should overhang the platform. **DO NOT** let the adaptor support the weight of the unit.

Do not secure the unit to the platform, as the weight of the unit will hold it in position.

STEP 5: CONNECTING REFRIGERANT LINES

Connect refrigerant lines from the outdoor condensing unit to the fan coil unit in accordance with its manufacturer's sizing recommendations for the length of the piping run. Proper line sizing is critical to the operation of the system. Always use proper brazing procedures. A trickle flow (2PSI) of dry nitrogen to avoid scale or blockage in the piping system is recommended while brazing. SpacePak also recommends installing a sight glass on the liquid line outside of the unit as an aid for accurately charging the system.

LUMBER SIZE	2 X 4	2 X 6	2 X 8	2 X 10
MAXIMUM HORIZONTAL	8'	16'	24'	32'

FIGURE 2.11: CONDENSATE PIPING RUNS

STEP 6: INSTALLING THE CONDENSATE TRAP & LINE

Refer to Fig. 2.2 & 2.3 for condensate drain location. Components for the PVC condensate trap are provided in a separate bag with fan coil unit (see Fig. 2.12) and should be cemented together with PVC pipe cement.

A CAUTION Do not use substitute trap. Do not cut off or alter trap components.

Screw male adapter (see Fig. 2.12) into unit condensate line connection. Assemble and cement remaining components together. Then cement assembly to male adapter. The 45° elbow provides an offset from beneath unit suction line for assess to clean-out plug.

Run a condensate line from the trap to a suitable drain that's in accordance with local codes. Make sure the line is pitched $\frac{1}{4}$ " per foot.

NOTICE: Never connect condensate line to a closed drain system.

STEP 7: WIRING THE UNIT

AWARNING Turn off electrical power supply before servicing. Contact with live electric components can cause shock or death.

All electrical and control wiring must be installed in accordance with the codes listed in Section 1 of this manual. Wiring diagram is provided in Figure 2.13. A separate 208/230/60/1 power supply is recommended for the unit. Use standard 15-amp fuse and 14-gauge wire from power supply to unit.

Connect power supply to Terminals L1 (hot) and L2 (hot) on the high voltage terminal block. Connect a ground wire to the equipment ground terminal located next to the high voltage terminal block.

The low voltage transformer in the unit has a 208 volt tap in the primary winding (color coded RED). If unit is to be operated with 208 volt electrical service, remove the 230 volt ORANGE lead from the L2 terminal and connect the 208 volt RED lead to the L2 terminal. Be sure to insulate the end of the unused ORANGE lead.

Locate the room thermostat on a wall near the return air box, between 40" to 48" from the floor. Connect the lowvoltage thermostat wiring from the room thermostat to the low voltage control block in the unit.

STEP 8: INSTALLING AIR DISTRIBUTION COMPONENTS

All plenum duct and supply tubing runs as well as room terminator locations must be in accordance with air distribution system requirements listed in Section 1 of this manual. Where taping of joints is required, UL181 approved tape is recommended.

Plenum Duct Installation

All tees, elbows and branch runs must be a minimum of 18" from the fan coil unit or any other tee, elbow or branch run. Keep all tees and elbows to a minimum to keep system pressure drop on larger layouts to a minimum.

NOTICE: Refer to duct installation instructions supplied with fan coil unit or follow manufacturers instructions supplied with other duct system types.

NOTICE: For the ESP-4860D system, a plenum tee must be installed 18" minimum from the fan coil unit before continuing plenum duct run (see air distribution system requirements in Section 1 of this manual).

FIGURE 2.17: INCORRECT TUBING INSTALLATION

Room Terminator & Sound Attenuating Tubing Installation

Room terminators and pre-assembled sound attenuating tubes are provided in the Installation Kits.

NOTICE: Do not install terminators in a wall in which a sharp bend in the sound attenuating tube is required (see Figure 2.17). The result would be unacceptable noise.

OPTION: Using a SpacePak Kwik Connect Wall Elbow (Model Number: AC-KCWE) addresses this condition (see Figure 2.18).

In marking location for room terminator (see Figure 2.19), the center of the terminator should be 5" from the wall or, when installed in the corner of a room 5" from both walls.

After marking location, drill a $\frac{1}{6}$ " diameter hole for outlet to be sure there is at least a 2" clearance all around the $\frac{1}{6}$ " hole to receive tubing and connector. Adjust direction

of hole as needed, to gain this 2" clearance. After all clearances have been checked, take a 4" diameter rotary-type hole saw and cut a hole, using the $\frac{1}{6}$ " diameter hole as a pilot.

Assemble the room terminator to the sound attenuating tubing by simply fitting the two pieces together and twisting until tight (see Figure 2.20). If the terminator is to be used in a floor location, then field fabricate a small screen ($1\frac{1}{2}$ " square; $\frac{1}{4} \times \frac{1}{4}$ 20-gauge galvanized wire screen) and place screen over opening on the back of the terminator prior to twisting on the kwik-connect (on the sound attenuating tube).

NOTICE: Do not shorten sound attenuating tube length. The result would be unacceptable noise.

Push the free end of the sound attenuating tube through the 4" hole until the two toggle springs on the room terminator snap into place.

Center the two spring clips on a line parallel to the direction of the tubing routing from the room terminator (see Figure 2.20). This is important since the weight of the tubing will have a tendency to cause a part of the terminator to pull away from the ceiling if the clips and tubing do not run parallel.

Then tighten the screws (attached to the terminator) until the terminator is snug against the ceiling or floor. **Do not overtighten.** For installations with floors or ceilings which are thicker than normal, longer toggle screws or special mounting plates may be required.

Supply Tubing Installation

Kwik-connects, plenum take-off gaskets, plenum takeoffs and balancing orifices are provided in the Installation Kits. Avoid sharp bends in the supply tubing (as well as the sound attenuating tube). The minimum radius bend is 4" (see Figure 2.21); however, wherever possible, hold to a larger radius.

At the plenum, all supply tubing connections must be a minimum of 18" from any plenum tee, plenum elbow or the fan coil unit.

Individual supply tubing runs must be a minimum of 6-feet, even if the distance between the sound attenuating tubing and plenum is less than 6 feet.

Supply tubing comes in 100-foot sections and may be cut to length with a knife or fine tooth hacksaw.

For each supply tubing run, estimate and cut the length of tubing that will be needed between the plenum and sound attenuating tubing. At the open end of the supply tubing which will attach to the sound attenuating tubing, install a kwik-connect (see Figure 2.22). First, push back the cover and the insulation exposing the inner core. Second, twist a kwik-connect into the inner core. Third, pull down the insulation and cover, and tuck it into the deep groove on the back of the kwik-connect. Fourth, wrap the connection securely with tape.

When finished, simply twist together (see Figure 2.23) the kwik-connect on the sound attenuating tube, and wrap the connection securely with tape.

After attaching the supply tubing to the sound attenuating tube, bring the open end of the tube to the plenum.

FIGURE 2.23: CONNECTING TUBING

Place the plenum take-off gasket on the back side of the plenum take-off and insert the assembly into the hole in the plenum (see Figure 2.25).

NOTICE: Gasket must be installed to seal plenum take-off to prevent air leakage.

Orient the plenum take-off to match the curvature of the plenum duct. Hand insert the four plenum take off fasteners one at a time and using the SpacePak pliers, snap the fasteners into place until they lock in place (see Figure 2.26).

NOTICE: All four fasteners must be installed to assure air tight fitting between plenum take-off and plenum.

In accordance with your calculations as to requirements for balancing orifices, mount the orifice in the outlet of the plenum take-off (see Figure 2.27), prior to attaching the supply tubing.

Next, install a kwik-connect in the open end of the supply tubing, using the same procedures as before, and twist together kwik-connects on supply tubing and plenum take-off. Wrap connection securely with tape.

Return Air Box & Duct Installation

Remove the return air grill from the return air box and remove the air filter from the return air grill.

Insert the return box from below for ceiling installation (or from the front for wall installations) and fasten with four screws through holes provided on the long side of the box. (see Figure 2.28).

Remove the grill and the filter from the grill frame. Insert the frame into the box and mount in place with the screws provided through a hole at each corner of the frame. Finally, place the air filter into the frame and replace the grill. Turn the latches a quarter turn to lock the grill in place. Slide a clamp band (provided with return air box) over one end of the return air duct. Place that end over the elliptical flange on the fan coil unit (see Figure 2.29). Move the clamp over the flange and tighten so the clamp holds the return air duct securely to the flange.

Follow the same procedures to attach the return air duct to the return air box (see Figure 2.29).

Winter Supply Shut-Off Installation

Simply snap winter supply shut-offs into the room terminator openings (see Figure 2.30). Wrap the return air filter in a plastic bag and reinstall it to block the return air opening. Winter supply shut-offs prevent moisture from collecting in ductwork during winter months. Be sure to remove the plastic bag and all winter supply shut-offs before operating the system.

SECTION 3: START-UP & OPERATION

SEQUENCE OF OPERATION

When power is turned on and thermostat fan switch is set to ON and the cooling indicator is set to OFF, the indoor fan motor is energized through the normally open contact FR1 of the FR fan relay in about 30 seconds. The outdoor unit is off.

When power is turned on and thermostat fan switch is set to ON or AUTO and the cooling indicator to COOL the indoor and outdoor units will start through the normally open contacts FR1 and FR2 of the FR fan relay.

AUTO position on the thermostat will stop and start your system when the temperature setting is satisfied. The ON position on the thermostat will stop the outdoor unit only when the temperature setting is satisfied and the indoor unit will continue to run, recirculating indoor air.

The fan coil unit is equipped with a protective device called an anti-frost control which will automatically stop the outdoor unit (while the indoor unit continues to run) if ice accumulates on the indoor unit evaporator coil causing abnormal operating conditions. When the accumulated ice has melted, the anti-frost control will restart the outdoor unit.

The fan coil unit is equipped with primary float switch, and the condensing unit will automatically shut down if the drain pan is full of water (condensate) and not draining. The fan coil unit will continue to operate. When the water level in the drain pan drops, the system will continue normal operation.

PRIOR TO START-UP

1. Check all electrical connections for tightness.

2. Check air filter has been installed in return air box or filter box.

3. Remove all winter supply shut-offs and store them in a safe place.

SYSTEM START-UP & ADJUSTMENTS

1. Place thermostat fan switch in ON position and cooling indicator in OFF position. In about 30 seconds, indoor unit blower will start.

2. Check blower operation for excess noise or vibration.

3. Check entire distribution system for leakage and apply additional tape where necessary.

4. Check that system static pressure is within acceptable limits (minimum 1.0" W.C. - maximum 1.5" W.C.). Static readings must be taken in the plenum a minimum of 18" (or after the tee on ESP-4860D systems) from the fan coil unit, plenum tees or elbows but before any supply run.

- a. If greater than 1.5" W.C. add additional supply runs.
- b. If less than 1.0" W.C. check the return air filter is clean and return duct is not collapsed or kinked.
- c. Check supply air plenum for leaks.
- d. If more supply runs than recommended are used, check that balancing orifices are in place.

5. Check that blower motor amp draw compares with fan coil unit rating plate. Amp draw shown on plate is the FLA of motor (not the actual running amps) and will vary with the pressure and voltage.

6. Place the thermostat cooling indicator in COOL position, which will start the outdoor unit. Let the system run at least 30 minutes to stabilize operating conditions.

7. For outdoor unit start-up, follow manufacturer's instructions.

8. Check that temperature drop across evaporator coil in the indoor unit is between 20°F to 28°F.

9. Verify that system refrigerant is correct by measuring subcooling at liquid service port. Subcooling should be 10°F to 13°F.

10. Check the super heat leaving the evaporator coil against the corresponding suction pressure from the schrader fitting at the fan coil unit. Superheat value should be between 9° and 12° F.

11. If a sight glass has been installed on the liquid line at the air handler check for the presence of flashing. If flashing is occuring, check and adjust subcooling by adding refrigerant.

CHARGING COOLING ONLY SYSTEMS

After start-up, allow the system to operate for approximately 30 minutes in order to establish stable operating conditions. Check that the temperature drop across the evaporator coil is 20°F to 30°F. Do not attempt to adjust the charge at ambient temperatures below 65°F.

1. Check refrigerant charge by measuring liquid subcooling. Subcooling should be approximately 10°F to 13°F. If a sight glass has been installed on the liquid line at the fan coil unit check for the presence of flashing.

2. If the subcooling is below 10° F, add refrigerant gas to the suction line service port. Watch pressure gauge and thermometer for correct subcooling. It should be approximately 10° F to 13° F.

NOTICE: Do not introduce refrigerant liquid to system through suction port. Liquid in the suction line may damage the compressor.

3. If subcooling is too high, slowly bleed refrigerant from suction line service port into an appropriate refrigerant recovery device. Watch pressure gauge and thermometer for correct subcooling (10°F to 13°F).

FACTORS AFFECTING THE BALANCE OF THE SYSTEM

A. Room Terminators (Outlets): Based on the equipment selected, determine the recommended number of fully open outlets from Figure 3.1.

FIGURE 3.1

	MINIMUM RECOMMENDED NUMBER OF FULLY OPEN OUTLETS *				
NOMINAL TONNAGE	MODEL	RECOMMENDED			
2	ESP-2430D	12			
2-1/2	ESP-2430D	14			
3	ESP-3642D	17			
3-1/2	ESP-3642D	19			
4	ESP-4860D	26			
5	ESP-4860D	26			

* The minimum or recommended number of outlets means fully open outlets. Any outlet having an orifice would be only a percentage of an outlet.

B. Orifice Combinations: Should orifices be required to balance the system (installed at plenum take-off), refer to the combinations listed in Figure 3.2.

FIGURE 3.2

DESIRED NUMBER OF TERMINALS*	TERMINAL - ORIFICE COMBINATION
.5	(1) .5
.65	(1) .35
.85	(1) .15
1.00	(1)
1.15	(1) .5 + (1) .35
1.30	(2) .35
1.50	(1) .35 + (1) .15 or (1) + (1) .5 or (3) .5
1.65	(1) + (1) .35 or (2) .5 + (1) .35
1.70	(2) .15
1.80	(2) .35 + (1) .5
1.85	(1) + (1) .15
1.95	(3) .35
2.00	(2)

*For a room with more than two (2) terminals, combinations of the above may be used to achieve the desired fractional number.

A CAUTION Releasing refrigerant gas into the atmosphere is a criminal offense.

It is important that the system be properly charged to avoid an overcharged system, but also to ensure that the system operates as efficiently as possible and delivers full capacity.

C. Supply Tubing Length: An outlet with a supply tubing length of 15 feet is considered one, fully opened outlet. For other lengths refer to Figure 3.3 for adjustment factors.

FIGURE 3.3

2" SUPPLY TUBING LENGTH ADJUSTMENT FACTOR CHART								
RUN	6'	8'	10'	12'	15'	20'	25'	30'
FACTOR	.85	.88	.90	.94	1.0	1.1	1.25	1.50

SECTION 4: MAINTENANCE

The SpacePak system has been designed to provide years of trouble-free performance in normal installations. Examination by the homeowner at the beginning of each cooling season, and in mid-season should assure continued, good performance. In addition, the system should be examined by a qualified service professional at least once every year.

BEFORE EACH COOLING SEASON

1. Check and clean air filter. The air filter is permanent type. Remove and clean thoroughly with soap solution and water.

▲ WARNING Turn off electrical power supply before servicing. Contact with live electric components can cause shock or death.

2. Check fan coil unit. Turn off unit power disconnect switch and remove service access panels.

a. Inspect evaporator coil and blower wheel for buildup of dust and dirt. Clean with solvent and/ or water as necessary.

b. Replace service access panels and turn on unit power disconnect switch.

3. Check that unit condensate drain is clear and free running, and plug is in cleanout.

4. For outdoor condensing unit, follow manufacturer's maintenance instructions.

5. Follow "System Start-Up & Adjustments" procedures in Section 3 of this manual.

IF SYSTEM FAILS TO OPERATE

1. Check that thermostat switch is set for proper mode of operation and is set below room temperature.

2. Check that outdoor unit is operating.

3. Check for tripped circuit breaker or blown fuse at either the main fuse box or at unit disconnect box on or near the condensing unit. Replace blown fuse with same size and type.

4. Review Troubleshooting Guide beginning on page 21 of this manual.

TROUBLESHOOTING GUIDE

CONDITION: ESP-D & CONDENSING UNITS RUN, BUT COOLING INSUFFICIENT

POSSIBLE CAUSE	VERIFICATION	SOLUTION
Low Suction Pressure	Check blower motor as described on page 6 in this manual.	If defective, replace motor.
	Check that filter in return air box is clean.	Clean air filter.
	Check system refrigerant charge.	Charge to proper subcooling accord- ing to manufacturer's instructions.
	Check for dirty evaporator coil.	Clean evaporator coil.
High Suction Pressure	Check for air bubbles in system refrigerant.	Charge to proper subcooling accord- ing to condensing unit manufactur- er's instructions. Install sight glass near indoor unit and monitor.
	Check calculated heat gain to be sure that equipment is sized properly.	Take necessary action.
	Check for obstructions near condensing unit which could cause recirculation of air.	Remove obstructions.
Low Head Pressure	Check system refrigerant charge.	Charge to proper subcooling according to condensing unit manufacturer's instructions.
	Check calculated heat gain to be sure that equipment is sized properly.	Take necessary action.
High Head Pressure	Check condenser fan motor accord- ing to condensing unit manufacturer's instructions.	If defective, replace fan motor.
	Check for dirty condensing unit coil.	Clean condensing unit coil.
	Check system refrigerant charge.	Charge to proper subcooling according to condensing unit manufacturer's instructions.
	Check for dirty evaporator coil.	Clean evaporator coil.
	Check for obstructions near condensing unit which could cause recirculation of air.	Remove obstructions.
	Check for restricted liquid lines.	Remove restrictions and kinks from lines.
Distribution System Air Leaks	Check all joints in air distribution system.	Make sure all joints are air tight. Verify static pressure as described on page 6 in this manual.

CONDITION: ESP-D UNIT & CONDENSING UNIT WILL NOT START

POSSIBLE CAUSE	VERIFICATION	SOLUTION
Thermostat Not Level	Check level of thermostat	If necessary, level thermostat.
Defective Thermostat	With volt meter, check resistance of thermostat contacts.	If resistance, thermostat is O.K. If no resistance, replace thermostat.
Loose Low Voltage Wiring	Check all wiring connections for tightness.	Tighten all loose connections.
Defective Blower Relay	Check relay as described on page 6 in this manual.	If defective, replace relay.
Defective Low Voltage Transformer	Check transformer as described on page 6 in this manual.	If defective, replace transformer.
Inadequate Electrical Service	Check electrical service against minimum requirements.	Replace electrical service with adequately sized service.

CONDITION: ESP-D UNIT WILL NOT START, BUT CONDENSING UNIT RUNS

POSSIBLE CAUSE	VERIFICATION	SOLUTION
Shorted Or Broken Wiring	Check wiring.	If necessary, repair or replace wiring.
Loose Low or High Voltage Wiring	Check all wiring connections for tightness.	Tighten all loose connections.
Defective Blower Motor	Check motor as described on page 6 in this manual.	If defective, replace motor.

CONDITION: ESP-D UNIT RUNS, BUT CONDENSING UNIT WILL NOT START

POSSIBLE CAUSE	VERIFICATION	SOLUTION	
Defective Thermostat	With volt meter, check resistance of thermostat contacts.	If resistance, thermostat is O.K. If no resistance, replace thermostat.	
Loose Low Or High Voltage Wiring	Check all wiring connections for tightness.	Tighten all loose connections.	
Float Switch And Anti-Frost Switch (Switches are wired in series)	Thermostat fan ON. With volt meter, check for 24v across terminal 1 on	If no voltage, fan relay is defective. Replace it.	
	the fan relay and terminal 7 on low voltage terminal strip.	If read 24v, relay is O.K.	
	With volt meter, check for 24v across terminals 1 and 7 on low voltage terminal block.	If no voltage, check coil for ice and drain pan for excessive water. If ice check air filter, return air duct & blower motor for air flow. If excessive water check and clean condensate drain lines.	
		If no ice on coil and water level in drain pan is normal, check each switch for continuity. If switch has no continuity, replace it.	
		If 24v, switches are O.K.	
Shorted Or Broken Wiring	Check wiring.	If necessary, repair or replace wiring.	
Condensing Unit	Check according to manufacturer's instructions.	Repair or replace as directed by manufacturer.	

CONDITION: ESP-D UNIT WILL NOT START, BUT CONDENSING UNIT CYCLES

POSSIBLE CAUSE	VERIFICATION	SOLUTION
Incorrect Low Voltage Connections	Check low voltage connections against wiring diagram.	Correct low voltage connections.
Loose Low Voltage Connections	Check all wiring connections for tightness.	Tighten all loose connections.
Defective Blower Relay	Check relay as described on page 6 in this manual.	If defective, replace relay.
Defective Blower Relay	Check motor as described on page 6 in this manual.	If defective, replace motor.

CONDITION: ESP-D UNIT CYCLES, BUT CONDENSING UNIT RUNS

POSSIBLE CAUSE	VERIFICATION	SOLUTION	
Blower Motor	Check motor as described on page 6 in this manual.	If defective, replace motor.	
	Check motor amps and compare to nameplate ratings.	If excessive, the motor may be overloaded. Check supply duct for breaks or leaks.	

CONDITION: ESP-D UNIT RUNS, BUT CONDENSING UNIT CYCLES

POSSIBLE CAUSE	VERIFICATION SOLUTION		
Anti-Frost Switch & Float Switch.	Thermostat fan ON. With volt meter,	If no voltage, fan relay is defective. Benlace it	
Series.	the fan relay and terminal 7 on low voltage terminal strip.	If read 24v, relay is O.K.	
	With volt meter, check for 24v across terminals 1 and 7 on the low voltage terminal block.	If no voltage, check oil for ice and drain pan for excessive water. If ice check air filter, return air duct & blower motor for air flow. If excessive water check and clean condensate drain lines.	
		If no ice on coil and water level in drain pan is normal, check each switch for continuity. If switch has no continuity, replace it	
		If 24v, switches are O.K.	
Thermostat in Wrong Location	Check that thermostat is in vicinity of return air box.	If necessary, relocate thermostat.	
Loose Low Or High Voltage Wiring	Check all wiring connections for tightness.	Tighten all loose connections.	
Defective Blower Motor	Check motor as described on page 6. in this manual.	If defective, replace motor.	
Condensing Unit	Refer to manufacturer's instructions.	Repair or replace per manufacturer's instructions.	

CONDITION: SWEATING AT ESP-D UNIT SUPPLY OUTLET

POSSIBLE CAUSE	VERIFICATION	SOLUTION
Air Leak At Supply Air Plenum Adaptor	Check taped joint at adaptor.	Tape joint properly.
Insulation at Outlet Not Installed	Check for insulation at outlet.	Install insulation.

CONDITION: EXCESSIVE NOISE AT TERMINATOR

POSSIBLE CAUSE	VERIFICATION	SOLUTION	
High Supply Air Plenum Static Pressure	Check static pressure as described on page 6 in this manual.	Check for and add flow restrictors as necessary in supply runs.	
		If necessary, add additional outlets.	
Sound Attenuating Tube Not Installed	Check for installation of sound attenuating tube.	Where necessary, install sound attenuating tube.	
Tight Radius In Sound Attenuating Tube Or In Supply Tubing	Check all tubing for tight radius.	Where necessary, correct radius.	
Incorrect Supply Tubing Length	Check that all supply tubing runs are 6' minimum.	Where necessary, correct supply tubing length.	
Improperly Balanced System	Check that correct size orifices have been installed.	Properly orifice supply tubing runs.	

CONDITION: EXCESSIVE NOISE AT RETURN AIR GRILL

POSSIBLE CAUSE	VERIFICATION	SOLUTION
Return Air Duct Not Installed Properly	Check for minimum 90° bend in return air duct.	Correct bend in return air duct to minimum 90°.
Dirty Return Air Filter	Remove and inspect.	Clean air filter.

CONDITION: EXCESSIVE VIBRATION AT ESP-D UNIT

POSSIBLE CAUSE	VERIFICATION	SOLUTION	
Noisy Blower Motor Assembly	Check blower motor assembly.	Tighten all fasteners.	
	Check blower motor for bearing noise.	Replace motor.	
	Check for loose or damaged blower wheel.	Tighten or replace blower wheel as necessary.	

CHECKING ESP-D BLOWER MOTOR

- 1. With volt meter, check voltage at terminals L_1 and L_2 on line voltage terminal block. Voltage should be $\pm 10\%$ of ESP-D unit nameplate rating.
- 2. Disconnect power to the ESP-D unit at the disconnect switch.
- 3. Disconnect motor lead at terminal L₁.
- **4.** With an ohmmeter, check continuity between the disconnected motor lead and terminal 4 on the fan relay.
 - a. If continuity, precede to Step 5 below.
 - b. If no continuity, feel the motor to see if it is excessively warm which would indicate the internal over- load may be open. When motor has cooled, check again to make sure you did not get a false reading. If no continuity, motor is defective.
- 5. With an ohmmeter, check each motor lead to ground to be sure motor is not grounded.
 - a. If not grounded, precede to Step 6 below.
 - b. If grounded, motor is defective.
- 6. Check capacitor, if capacitor is suspect, replace it with a capacitor of similar rating of motor operates normally, make a permanent capacitor replacement.
- **7.** Reconnect all electrical leads, restore electrical services to the ESP-D unit, and place thermostat fan switch in the **ON** position.
- 8. With an ampmeter, check that amp draw compares with ESP-D unit rating plate. Amp draw shown on plate is the actual running amps for a cooling-only installation with an external static pressure of 1.5" W.C.

CHECKING ESP-D BLOWER RELAY

The ESP-D unit is equipped with a time-delay blower relay. Wait one full minute after turning on power for relay to close.

- 1. With a volt meter, check 24v across terminals R and C on the low voltage terminal block.
 - a. If read 24v, precede to Step 2.
 - b. If no voltage, check low voltage transformer.

- 2. With a volt meter, check 24v across terminals R and G on the low voltage terminal block.
 - a. If read 24v, precede to Step 3.
 - **b.** If no voltage, check thermostat fan circuit.
- 3. Check for 230v* across terminal 4 on blower relay and terminal $L_{1.}$
 - a. If reading is 230v, blower relay is O.K.
 - **b.** If no reading, replace the relay.
 - * 208v on 208 line volt systems.

CHECK ESP-D LOW VOLTAGE TRANSFORMER

- 1. With volt meter, check for 230v across terminals $L_1\ensuremath{\,\&}$
 - L_2 on the line voltage terminal block.
 - a. If reading 230v, precede to Step 2.
 - **b.** if no voltage, check the power supply to the unit.
- **2.** With volt meter, check for 24v across terminal 5 and terminal 7 on the low voltage terminal block.
 - **a.** If read 24v, transformer is O.K.
 - b. If no voltage, replace transformer.

CHECK EXTERNAL STATIC PRESSURE

You can use a U-tube manometer to check the external static pressure on the duct system.

- 1. Puncture a 1/4" hole in the plenum duct at least 18" (or after the tee on ESP-4860D systems) from the fan coil unit.
- 2. Insert one manometer tube into the hole until the end of the tube is flush with the inside wall of the plenum duct.
- **3.** System static pressure should be between 1.0" and 1.5" W.C.
 - **a.** If greater than 1.5" W.c. add additional supply runs.
 - **b.** If less than 1.0" W.C. check the return air filter is clean and return air duct is not collapsed or kinked.
 - c. Check supply air plenum for leaks.
 - **d.** If more supply runs than recommended are used, check that flow restictors are in place.

Customer / Dealer Data:	Refrigeration-side Data:
Name:	Line sizes: Liquid Suction
Address:	Total equivalent length of lines: Ft; Vertical Rise: Ft.
	@ Condensing Unit:
	Liquid: psi; Temp:°F; Subcool:°F
Tel (day) (eve)	Suction: psi; Temp:°F; Superheat:°F
Installing Dealer / Contractor:	@SpacePak:
Name:	Liquid: psi; Temp:°F; Subcool:°F
Tel:	Suction: psi; Temp:°F; Superheat:°F
Equipment Data:	Approximate time running before taking readings: Hrs.
SPACEPAK Model # ESP / WCSP -	Did you adjust the TXV? (Y/N); (If yes, explain):
SPACEPAK Serial #	
SPACEPAK Date of Installation:	
Cond Unit Mfr:	
Cond Unit Mod #:	Refrigerant Charge (if weighed-in): Ibs
Rated Capacity:BTUH; SEER:	R410a / R22 (circle one)
Air-side Data:	Installed options: (circle one)
Total # of outlets:; Supply tube length: Ft (avg) (Please sketch duct layout on reverse side of this sheet, noting all fittings and distances, including return duct size / length)	sight glass filter/drier zone controls Other:
Air Filter: Size (LxHxD)	
Type (pleated, etc):	Water Data: (where applicable)
Is the filter clean? (Y/N)	Line sizes:"; Length: FT
Static Pressure (Ps) in supply plenum:"WG (Measure at approximately 3 ft downstream of blower discharge)	Water temperatures:
Ps in return duct (downstream of filter, upstream of coil)"WG	Glycol?: (Y/N): % Solution:
SpacePak Motor: Amps (measured): Amps	NOTES:
Voltage (measured): Volts	
Air Temperatures:	
@ Return (indoor ambient):°FDB;°FWB	
@ Condensing unit (outdoor ambient):°F	
@ AHU (read 3 ft from fan discharge)°F	
@ last supply outlet°F	

REF. NO.	PART DESCRIPTION	REFRIGERANT TYPE	UNIT SIZE	PART NUMBER
1	Anti-Frost Control	does not apply	All Sizes	BM-7353
	Primary Drain Pan Ass'y	does not apply	2430	BM-7354
2	Primary Drain Pan Ass'y	does not apply	3642	BM-7355
_	Primary Drain Pan Ass'y	does not apply	4860	BM-7356
	Coil Assembly	R22	2430	70-8033
3	Coil Assembly	R22	3642	70-8034
	Coil Assembly	R22	4860	70-8035
	Coil Assembly	R410A	2430	70-8039
3	Coil Assembly	R410A	3642	70-8040
	Coil Assembly	R410A	4860	70-8041
	Expansion Valve (TXV)	R22	2430	W28-WG0242-02
4	Expansion Valve (TXV)	R22	3642	W28-WG0242-03
	Expansion Valve (TXV)	R22	4860	W28-WG0242-04
	Expansion Valve (TXV)	R410A	2430	W28-WG0242-12
4	Expansion Valve (TXV)	R410A	3642	W28-WG0242-13
	Expansion Valve (TXV)	R410A	4860	W28-WG0242-14
5	Transformer	does not apply	All Sizes	27-3293
	Motor	does not apply	2430	27-3236
6	Motor	does not apply	3642	27-3237
	Motor	does not apply	4860	27-3238
	Blower Wheel	does not apply	2430	27-8032
7	Blower Wheel	does not apply	3642	27-8032
	Blower Wheel	does not apply	4860	27-8033
9	Terminal Block (low volt)	does not apply	All Sizes	27-3051
10	Terminal Block (high volt)	does not apply	All Sizes	27-3056
11	Access Panel	does not apply	All Sizes	BM-7361
12	Fan Relay	does not apply	All Sizes	27-3322
13	Primary Float Switch	does not apply	All Sizes	BM-6917
14	Anti-Frost Switch Bypass	does not apply	All Sizes	27-3374

LIMITED WARRANTY Central Air Conditioning Products

The "Manufacturer" warrants to the original owner at the original installation site that the Central Air Conditioning Products (the "Product") will be free from defects in material or workmanship for a period not to exceed one (1) year from the startup or eighteen (18) months from date of shipment from the factory, whichever occurs first. If upon examination by the Manufacturer the Product is shown to have a defect in material or workmanship during the warranty period, the Manufacturer will repair or replace, at its option, that part of the Product which is shown to be defective.

This limited warranty does not apply:

- a) if the Product has been subjected to misuse or neglect, has been accidentally or intentionally damaged, has not been installed, maintained or operated in accordance with the furnished written instructions, or has been altered or modified in any way.
- b) to any expenses, including labor or material, incurred during removal or reinstallation of the defective Product or parts thereof.
- c) to any workmanship of the installer of the Product.

This limited warranty is conditional upon:

- a) shipment, to the Manufacturer, of that part of the Product thought to be defective. Goods can only be returned with prior written approval from the Manufacturer. All returns must be freight prepaid.
- b) determination, in the reasonable opinion of the Manufacturer, that there exists a defect in material or workmanship.

Repair or replacement of any part under this Limited Warranty shall not extend the duration of the warranty with respect to such repaired or replaced part beyond the stated warranty period.

THIS LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, AND ALL SUCH OTHER WARRANTIES, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY DISCLAIMED AND EXCLUDED FROM THIS LIMITED WARRANTY. IN NO EVENT SHALL THE MANUFACTURER BE LIABLE IN ANY WAY FOR ANY CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OF ANY NATURE WHATSOEVER, OR FOR ANY AMOUNTS IN EXCESS OF THE SELLING PRICE OF THE PRODUCT OR ANY PARTS THEREOF FOUND TO BE DEFECTIVE. THIS LIMITED WARRANTY GIVES THE ORIGINAL OWNER OF THE PRODUCT SPECIFIC LEGAL RIGHTS. YOU MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY BY EACH JURISDICTION.

