

Applications Manual

Ecomatic / Logamatic Controls

Save These Instructions !

TABLE OF CONTENTS

1	Introduction	1
2	Terms	2-4
3	Description of Wiring Terminals	5-7
4	Application Drawings	8-63
5	Boiler / Burner Wiring	64-75
6	Multi-zone Relay Controls	76-83
7	Mixing	84-93
8	Tables / Formulas	94-95

This manual is intended to address some of the many applications that are possible using Buderus outdoor reset controls. Applications depicted in the manual are presented with both mechanical and electrical outlines. The drawings contained in this manual are intended to be used as an aid to system installers and designers and are conceptual in nature. Auxiliary equipment depicted in this manual does not necessarily represent any one particular manufacturer or specific model number. There are a wide variety of techniques, practices and piping arrangements possible with hydronic heating systems and it is the responsibility of the installing contractor to determine which of these is best suited for a specific application.

In an effort to simplify electrical drawings, they have been limited to zone controlling only (space heating and DHW). Other constants such as power input, boiler sensor and outdoor sensor wiring have also been eliminated. Information for wiring of burners and constants can be found in section 5 of this manual. Further information can be found in the control service manual.

Although this manual covers many common applications for our equipment, the possibilities are virtually endless. Should you encounter an application that is not covered in this manual or have questions regarding any of its content, we encourage you to contact us here at Buderus Hydronic Systems, USA.

Buderus Hydronic Systems, Inc. reserves the right to make changes without notice due to continuing engineering and technological improvements.

Outdoor Reset: Outdoor reset is a control method that takes outdoor air temperature into consideration when determining the system water temperature. Instead of a fixed high limit temperature (i.e. 180°), the high limit is reset to a temperature high enough to satisfy the heat loss at any given outdoor temperature.

In designing a heating system the first requirement is an accurate heat loss calculation. Several factors are used in determining heat loss, the volume of space being heated, type of materials being used in construction, insulation values and a design temperature. The design temperature represents the coldest day of the year. The heat loss calculation is then used to determine the output requirements for the boiler, baseboard, panel radiators, etc. In short the system is sized to heat your house on the coldest day of the year.

However, a buildings heat loss is ever changing; and is largely dependent on outdoor temperature. As the outdoor temperature drops, your heat loss increases and as it rises your heat loss decreases. The fact is that approximately 98% of the heating season your boiler and radiators are oversized. With outdoor reset controlling you can more accurately match the output from your heating system to the current heat loss. For example, you may require 180° water temperature on a 10° day. Yet, at a 40° outdoor temperature you may only require 135° water temperature to satisfy the heat loss. By resetting the system water temperature, a lower average water temperature is used throughout the heating season and maximum temperature is used only on the coldest days of the year.

Among the many benefits to this type of controlling is optimum fuel economy. By only heating the water to the minimum temperature needed, fuel economy is maximized (as much as 30% in fuel savings!). Lower standby losses during "off" cycles (due to a lower boiler temperature) also reduce fuel consumption. In addition, room comfort level is significantly increased by matching the heat output to the current heat loss. Less room temperature fluctuation is realized. System noise caused by expansion of piping is significantly reduced due to lower system water temperatures.

Constant circulation zone: A constant or continuous circulation zone is just what the term implies, water continuously circulates through a given zone when the heating system is in operation. The water temperature in this zone is modulated so that the heat output from your distribution units (i.e., fin-tube baseboard, panel radiators, radiant floors, etc.) matches the rate of heat loss for that zoned area. A constant circulation zone is typically the main heating zone. In multi-zone systems, the constant circulation zone must require the highest system water temperature. With this method of controlling, a room sensor is required in order to monitor room temperature. All secondary zones will have standard room thermostats to intermittently operate a zone valve or zone circulator.

Terms

The constant circulation zone will only be interrupted under the following conditions:

- Domestic hot water priority.
- Certain setback modes (See the control Service Manual for information on various setback modes).
- Condensate protection. If boiler water temperature falls below the condensate protection temperature while the burner is firing, the space heating circulator(s) will be shut off. Once the boiler temperature reaches a safe level, circulator operation will resume.
- When the outdoor temperature rises above the WWSD (warm weather shut down) setting.

WWSD: Warm weather shut down or summer-winter changeover, is the outdoor air temperature at which the space heating function of the system shuts down. With the Buderus control system this temperature is adjustable from 49°F to 87°F. When the outdoor temperature rises above the WWSD set point, the system will only operate for domestic hot water production. . (For detailed operation of the WWSD feature refer to the control Service Manual).

BFU Room sensor: The Buderus room sensor is similar to a thermostat although it will not turn a circulator on or off. The function of the room sensor is to continually monitor room temperature and relay this information back to the control system. This information is used to compensate for variations in room temperature due to internal heat gains (or losses) such as solar gain, fireplaces, wood stoves, appliances, lighting, people, open doors or windows, etc. The control compensates for these variations by adjusting the system water temperature (up or down) in order to maintain the desired room temperature. Buderus room sensors also allow the occupant to manually override programmed setback periods.

The control system allows you to limit the amount of compensation that the room sensor has over the selected heating curve. This setting is referred to as "ROOM COMP" and can be adjusted at the programming level of the control. This setting is only available when using a room sensor.

You may want to limit compensation if secondary zones are under radiated.

Example. The main heating zone (continuous circulation) zone is experiencing solar heat gain. The room sensor senses the rise in room temperature and lowers the system water temperature in order to keep the zone from over heating. In this scenario, the system water temperature could be lowered enough so that the output from a secondary zone was insufficient to satisfy that zone.

Only one Buderus room sensor can be used for high temperature space heating (a second room sensor can be added when using an FM241 module for motorized mixing of a lower water temperature).

Careful consideration must be given to placement of room sensors. Keep in mind that not all applications are suitable for using a constant circulation zone. Avoid using a room sensor in a small baseboard zone as overheating may occur during DHW production. A standard room thermostat can be used in conjunction with the room sensor to give high limit protection.

2 Terms

Setback: Buderus reset controls allow the occupant to program setback periods in order to further reduce operating costs. Several modes of setback can be selected with the Buderus control. The two modes used for residential applications are "SETBACK" and "RMSETBACK". Unlike conventional setback thermostats that only reduce the zone temperature setting, the Buderus control system will operate the boiler at a reduced water temperature. For example, at a 30°F outdoor temperature the boiler water temperature may be 145°F, at that same 30° outdoor temperature during a setback period, the boiler water temperature may be reduced to 130°.

This further reduction of water temperature will decrease the output from your radiators thereby lowering the room temperature in the living space. The extent to which the water temperature is reduced is dependent upon the desired room temperature reduction during setback periods. This value can be set in one of two ways:

- SETBACK mode a "DAYTEMP" and a "NIGHTTEMP" would be entered on the Buderus control (this would be done when you are not using a BFU room sensor).
- RMSETBACK mode when using a BFU room sensor, the room sensor allows you to select the amount of room temperature setback.

Allowance for pick-up time must be considered when coming out of a setback period. Systems that operate on outdoor reset will have a longer recovery time than systems that operate at maximum temperatures all the time. The two variables to consider are the amount of room temperature reduction and the length of the setback period. The use of a BFU room sensor can speed up the recovery time, however the amount of temperature boost is dependent upon the ROOMCOMP setting on the Buderus control (for details refer to the control Service Manual).

Description of Wiring Terminals

WHITE	WHITE	ORANGE		GREE	N			ÆLI	LOV	V/BL	UE.	G	RE	EN		GRE	Y	PL	JRP	LE
POWER	POWER	SAFETY	B	URN	ER			FL	UE	GA	s		HE/	٨T		DH/	N	R	ECI	RC
OUTPUT	INPUT	LIMIT											PUN	MP		PUN	IP	1	PUM	IP
ZM 1	Netz	Si-Gerate	B	renne	r		At	gas	ube	rwa	chung	P	H-H	K1		PS	5		PWF	-
+ N L		17 19 10	1 4 5	2 0	10.14	1 12	1	N	4	2	34		Ν	H		N	Η		Ν	н
							•		_			÷	_	63	1			±	13	
888	888	888	888	3 8	88	9	8	8	8	8	88	8	8	8	8	8	Θ	8	8	8

BROW	N 1	AN	GREEN	BLUE
ROO	A T.	ANK	BOILER	OUTDOOR
SENSO	r se	NSOR	SENSOR	SENSOR
BF		FB	FK	FA
1 2	: 1	2	1 2	1 2
8 E	ΙE	8	88	88

Line Voltage (120-VAC) Connections:

White (ZM1)	the FM241 module plu	er: rage power when using optional module FM241. The wiring harness on gs into this block. If a 110V motor is being operated by the FM241, nal 41 on the SH-HK2 wiring block.
White (Netz)	Power input: Connect 120-vac powe	r source to L and N using 10 amp in-line fuse provided.
Orange (SI)	Safety connections: Terminals 17 and 18:	There is a factory-installed jumper between terminals 17 and 18. This jumper must stay in place unless a 120v low-water cutoff is used. When using a low-water cutoff, remove the jumper and connect the normally closed contacts on the low-water cutoff to terminals 17 and 18.
	Terminal 19:	When the manual reset high-limit trips, terminal 19 puts out 120-vac for alarm signal (alarm provided by others).
Green (Brenner)	Burner connection: Terminal 4: Terminal 8: Terminal 9: Terminal 10 and 11: Terminal 12: (See section 5 of this m	Common neutral Requires 120-vac input to operate the hours run meter Requires 120-vac input to display burner error Dry contact closure for burner firing Constant 120-vac voltage nanual for application wiring diagrams for burner circuit)
Yellow/Blue (UE)	[°] Flue gas testing: Not used in U.S. <i>Do ne</i>	of remove factory installed jumper between terminals 2 and 3.
Green (HK-1)		on terminals 61 (N) and 63 (H) for space heating pump(s). Not to exceed e space-heating pumps are used, refer to specific application wiring
Grey (PS)	Domestic water circula 120-vac power output o	tor: on terminals 24(N) and 25(H) for DHW production.
Purple (PWF)	Domestic water recircu 120-vac power output o	lation pump: on terminals 13(N) and 14(H) for DHW recirculation.

Note: Power to terminals 61 and 63 are interrupted when the system is in domestic water production. Therefore, there will never be power on terminals 24/25 and 61/63 at the same time, while operating in automatic mode

5

Description of Wiring Terminals

WHIT	E	WHI	TE	OF	AN	GE			G	RE	EN				YE	LC	W/B	LUE		G	RE	EN		GRE	Y	PL	JRP	LE
POW		POV	/ER	S/	FET	Y			BU	RN	ER				F	LU	E G/	s			HE	NT.		DH1	N	R	ECI	RC
OUTP	σ	INP	υτ	L	IMI1	r															PUN	I P		PUN	AP		PUN	iP
ZM 1		Net	2	Si	Gera	ate			Bre	nne	r			A	bga	sut	Nerw	achu	ing	P	H-H	K1		PS	3		PWI	F
+ N		+ N		17	40	40	1		0	0	40	11 -	42				0	2			Ν	Н		Ν	Η		Ν	Н
T IN	ы	+ I)		11	10	19	+	4	0	э	10	11	12	*		1	2	3	4	¥	61	63	+	24	25	÷	13	14

BRO) WN	T/	N	GR	EEN	BL.	UE
	om Sor	TA Sen				OUTE SEN	
B	F	F	в	F	ĸ	F	A
1 日	2 8	1 8	2 ⊟	1 8	2 8	1 日	2 8

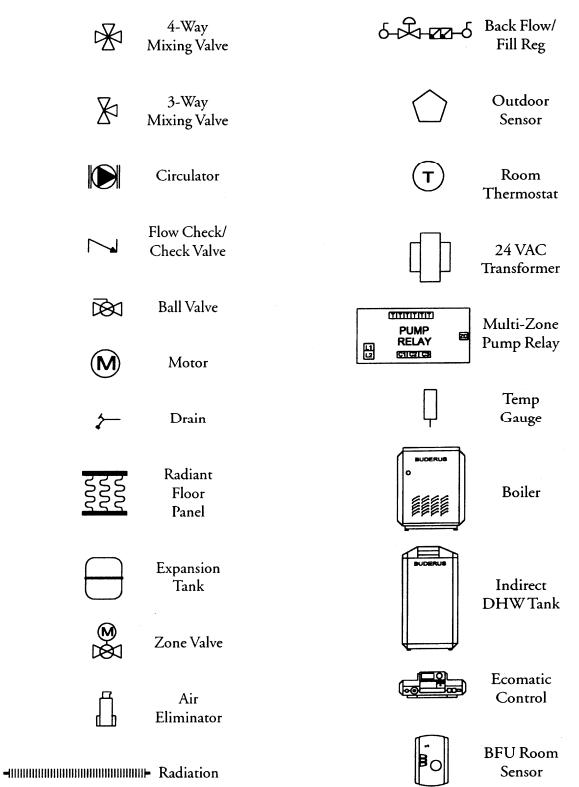
Sensor Connections (Low Voltage):

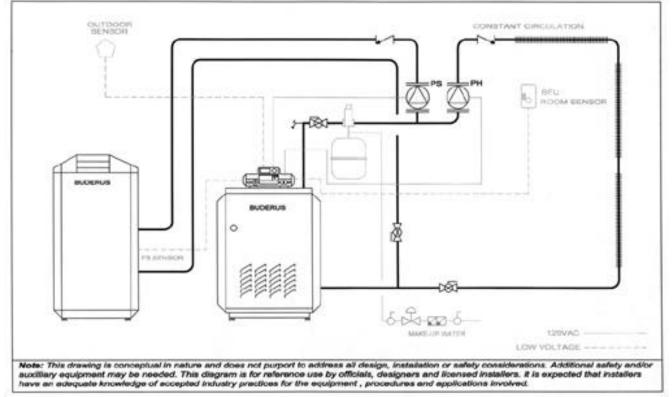
Brown (BF)	BFU room sensor-circuit #1: Connect BFU room sensor (circuit #1) using 18-2 AWG wire. Connections are polarity sensitive, terminal 1 must be wired to terminal 1 on room sensor, etc. Wiring can be run up to 500' from control.
Tan (FB)	Domestic tank sensor: The FB tank sensor and terminal plug are supplied with the control. For SU and ST series tanks the FB sensor is inserted into the immersion well in the tank. For L and LT series the sensor is surface mounted on the front of the tank using the bracket provided on the tank. Sensor wire can be extended if necessary, using 18 AWG wire.
Green (FK)	Boiler sensor: The FK sensor comes pre-wired to the terminal block and bundled together with two capillaries. This sensor bundle is inserted into the chrome well provided. (refer to control Service Manual for well location for specific boiler model)
Blue (FA)	Outdoor sensor: The outdoor sensor is a thermistor-type sensor protected by a UV resistant enclosure. The outdoor sensor should be installed on the north/northeast side of the building, out of direct sunlight. Mount the sensor at a height where it cannot be tampered with or affected by snow accumulation. Run 18-2 AWG wire to the outdoor sensor up to 300' in length. Avoid running wire parallel to telephone or line voltage wires.

3

3 Description of Wiring Terminals

Г


							•				
i	[FM2	41 MODULE		1	FI	M242 N	IODUL	.е	Г	
	BROWN	LT. BROWN	BROWN	BROWN			WH	ITE			
	ROOM SENSOR	SUPPLY SENSOR	MIXING VALVE	HEAT PUMP		STA	AGING	MOD	ULE		
	BF	FV	SH-HK2 OC	PH-HK2 N H							
	1 2	12	÷ 41 43 44	÷ 61 63		36	37	38	39		
	88	88	8888	888		8	8	8	8		
Optional FM241 N			2								
Brown (SH		Tern Tern Tern Tern	ng/Space heat 1inal 41 1inal 43 1inal 44 1inals 61/63 0n 7 of this m	Pow "Ol "CI Pow	ver input f PEN" outj LOSE" ou ver output	put to mi tput to m for circu	ixing m nixing r nit #2 p	otor notor ump(s)	-		
Brown (BF)		Con: sensi		n sensor (c 1 must be		-				ctions are polar Wiring can be r	-
Light Brown	n (FV)	The strap using	ped onto circı	terminal p 1it #2 pipin ing and cli	ng, for sen p provideo	sing of th d and cov	ne mixe	d water	r tempei	le. The FV sense rature mount to n. The sensor le	pipi
Wiring Har	ness	Con	er Supply: nect the wiring b) to wiring blo	-			241 mo	dule (l	orown, ł	blue, and yellow	r/grcc
FM242 S	taging	Module	:								
White		Term	iinal 36 iinal 37/39 iinal 38	Dry	t used. r contact c tput signal		•	-			

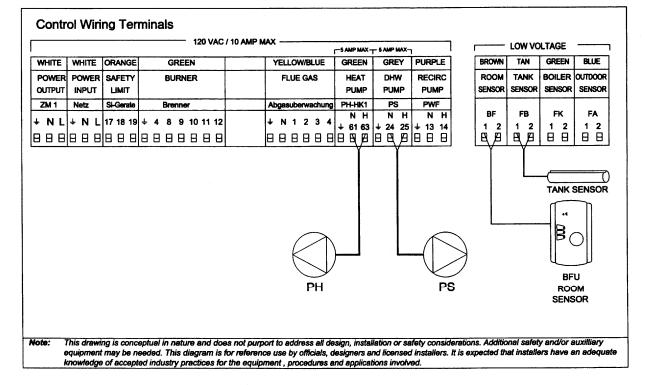

(refer to section 5 of this manual for detailed wiring information for FM242)

Drawing Number	Description	Page Number
	Single Temperature Systems	
001	Single Zone Space Heating	10
	(constant circulation)/DHW	
002	Single Zone Space Heating/DHW	12
003	Multi-zone Space Heating	14
	(with constant circulation zone)/DHW	
004	Multi-zone Space Heating/DHW	16
005	Multi-zone Space Heating using Zone Valves	18
	(with constant circulation zone)/DHW	
006	Multi-zone Space Heating using Zone Valves/DHW	20
007	Multi-zone Space Heating using Zone Valves (single system pump)/DHW	22
	Multi-Temperature Systems	
008	Multi-zone High Temp Space Heating/Radiant Floor	24
	Heating with FM241 module and Motorized Mixing Valve/DHW	
009	Multi-zone High Temp Space Heating/Radiant Floor	28
	Heating with FM241 module and Motorized Mixing Valve	
	(no constant circulation)/DHW	
010	Multi-zone Radiant Floor Heating with FM241 module and Motorized Mixing Valve/DHW	32
011	Multi-zone Radiant Floor Heating (using Zone Valves) with	36
	FM241 module and Motorized Mixing Valve/DHW	
012	Two Temperature Multi-zone Radiant Floor Heating with	40
	FM241 module and Motorized Mixing Valve/DHW	
013	Multi-zone Space Heating with Primary/Secondary Piping/DHW	44
	Dual Boiler Systems	
014	Parallel Boiler Piping using FM242 module/DHW	46
015	Dual Boiler/Primary/Secondary Piping using FM242 module / DHW	48
	Domestic Hot Water Systems	
016	DHW with Multiple Tanks (Parallel Piping)	50
017	DHW with Multiple Tanks (Multiple Temperature DHW)	52
	Special Applications	
018	On-demand Heating Zones	54
019	Conceptual Drawing	58
020	Variable Flow Injection Mixing (Primary/Secondary Piping)	60
021	Variable Flow Injection Mixing (Direct Injection)	62
	Boiler/Burner Wiring	

In order to simplify electrical application drawings, boiler/burner wiring has been omitted from this section. Detailed wiring schematics for oil burners, G124X, G234X and G334X gas boilers are located in section 5.

Mechanical/Electrical Symbols

APPLICATION ECO-001 / MECHANICAL


DESCRIPTION:

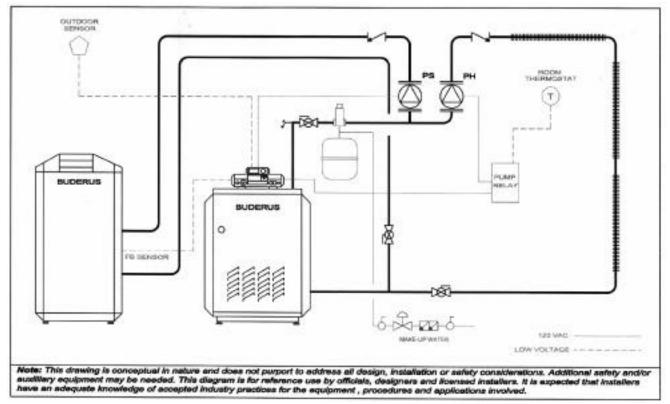
Single Zone Space Heating (constant circulation) / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve and inputs from both the outdoor sensor and indoor room sensor.
- During setback periods, the boiler temperature will be reduced based on the night setback setting on the room sensor.
- The space heating pump (PH) shall run continuously with the following exceptions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
 - 4) Initial part of setback period
- This application requires a room sensor for constant circulation.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH circuit will be turned on.

APPLICATION ECO-001 / ELECTRICAL


DESCRIPTION:

Single Zone Space Heating (constant circulation) / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA), boiler sensor (FK) and room sensor (BF).
- 120v output from terminals 61 & 63 (PH-HK1) powers space heating pump (PH).
- The space heating pump (PH) shall run continuously with the following exceptions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
 - 4) Initial part of setback period
- This application requires a room sensor for constant circulation.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating pump (PH) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH circuit will be turned on.

APPLICATION ECO-002 / MECHANICAL

DESCRIPTION:

Single Zone Space Heating / Indirect DHW Heating

Space Heating Operation:

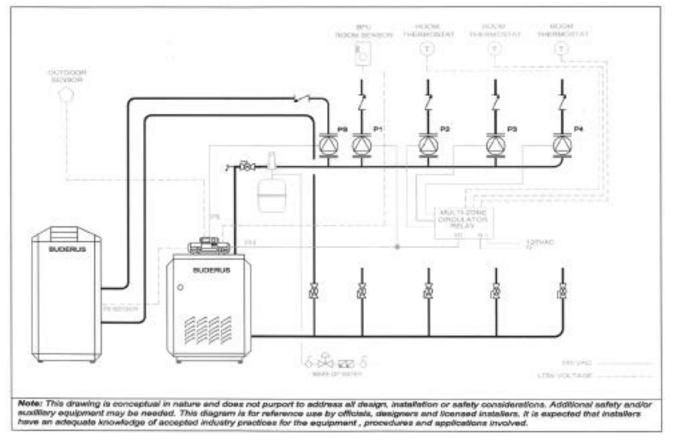
- Boiler temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Ecomatic control.
- The space-heating pump (PH) requires a switching relay to operate on a call for heat from a room thermostat.
- Power to the PH circuit shall be interrupted under the following exceptions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application *does not* require a room sensor.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH circuit will be turned on.

.

	ORANGE SAFETY LIMIT	 	REEN		 YELI	.ov	V/BLI	JE	G	REEN	T	GRE	V	PURPLE		BROWN	TAN	GREEN	BLUE
INPUT	LIMIT	BU	RNFR									0.1	. 1	FUNFLE		Ditotiti	1744	GREEN	BLUE
Netz					FL	UE	GAS			IEAT PUMP		DHV PUM		RECIRC PUMP		ROOM SENSOR	TANK SENSOR	BOILER SENSOR	outdoor Sensor
	Si-Gerate	Bre	ner		 Abgas	ube	rwac	hung		I-HK1		PS		PWF					_
	17 18 19 日日日		910 88		+ N 8 8		2 : 日		÷	N Н 6163 18()Ø	3 +	N 24 E	25	N H ↓ 13 14 日日日		BF 12 日日	FB 12 E	FK 12 日日	FA 12 日日
		F	Э́рн)			E E E E E E E E E E E E E E E E E E E) Li	_					- (C	3			TANK	U SENSOR
3				PH		T ROOM THERN	T ROOM THERMOS	THERMOSTAT	THERMOSTAT	ROOM THERMOSTAT	PUMP	THERMOSTAT	T ROOM THERMOSTAT	ROOM THERMOSTAT	ROOM THERMOSTAT	T ROOM THERMOSTAT	ROOM THERMOSTAT	ROOM THERMOSTAT	

APPLICATION ECO-002 / ELECTRICAL


DESCRIPTION:

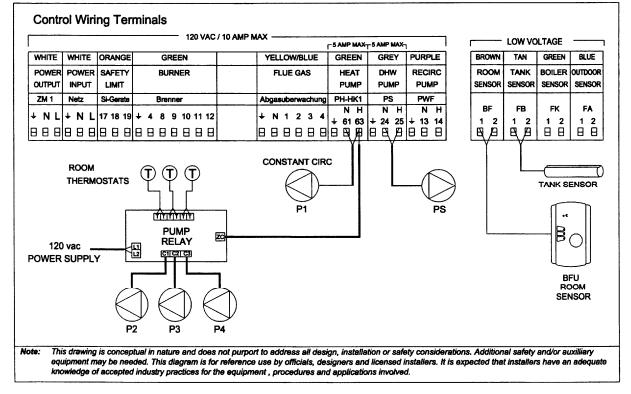
Single Zone Space Heating / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- This application requires a pump switching relay (not supplied by Buderus).
- 120v output from terminals 61 & 63 (PH-HK1) provides power to the pump relay. Space heating pump (PH) is energized on a call for heat from a room thermostat. Power to the pump relay shall be interrupted under the following conditions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH circuit will be turned on.

APPLICATION ECO-003 / MECHANICAL


DESCRIPTION:

Multi-Zone Space Heating (with constant circulation zone) / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve and inputs from both the outdoor sensor and indoor room sensor.
- During setback periods, the boiler temperature will be reduced based on the night setback setting on the room sensor.
- The constant circulation zone pump (P1) will be wired directly to the PH-HK1 circuit on the Ecomatic control. Additional zone pumps require a multi-zone switching relay to operate on a call for heat from a room thermostat.
- Power to the PH-HK1 circuit shall be interrupted under the following conditions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
 - 4) Initial part of setback period
- This application requires a room sensor for constant circulation.

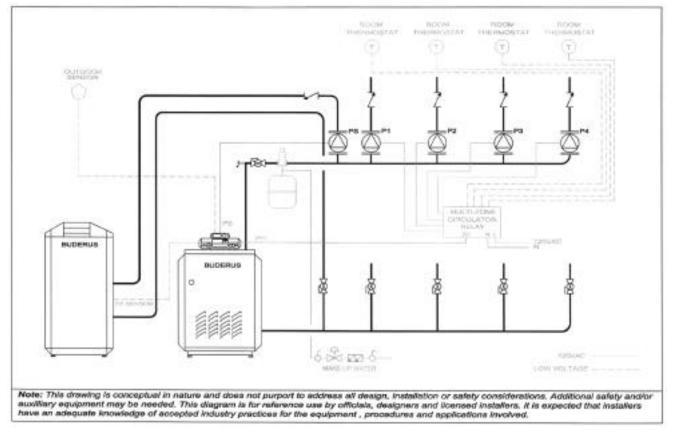
- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-003 / ELECTRICAL

DESCRIPTION:

Multi-Zone Space Heating (constant circulation) / Indirect DHW Heating

Space Heating Operation:


- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA), boiler sensor (FK) and room sensor (BF).
- This application requires a multi-zone pump relay (not supplied by Buderus).
- 120v output from terminal 63 (PH-HK1) will energize the relay. However, the PH-HK1 circuit is limited to a 5 amp maximum load. Therefore, multi-pump applications require an additional source of 120v power to the pump relay. Generally the #63 terminal is wired to the ZC terminal on the relay panel, however relay circuitry can vary. Refer to wiring diagrams provided in this manual for specific manufacturer and model of the relay being used. If the model being used is not listed, contact Buderus for assistance.
- The constant circulation pump (P1) shall run continuously (see following exceptions). All other zone pumps are energized on a call for heat from a room thermostat.
- Power to the pump relay and constant circulation pump shall be interrupted under the following conditions:
 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
 - 4) Initial part of setback period
- This application requires a room sensor for constant circulation.
- End switch (X1 X2) on multi-zone relay panel is not used.

DHW Heating Operation:

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down

PH-HK1 circuit will be turned on.

4

APPLICATION ECO-004 / MECHANICAL

DESCRIPTION:

Multi-Zone Space Heating / Indirect DHW Heating

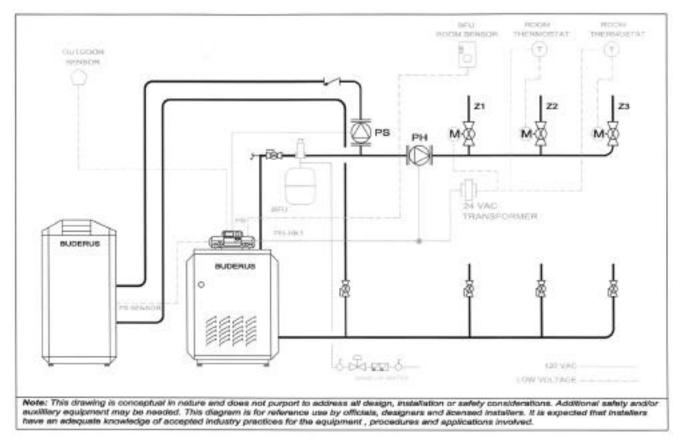
Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Ecomatic control.
- Space heating pumps require a multi-zone switching relay to operate on a call for heat from a room thermostat.
- Power to the PH-HK1 circuit shall be interrupted under the following conditions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
 - 4) This application does not require a room sensor.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

			120 VAC / 10 AM	P MAX	-5 AMP MAX	-5 AMP MAX-		r	LOW VC	LTAGE	
WHITE	WHITE	ORANGE	GREEN	YELLOW/BLUE	GREEN	GREY	PURPLE	BROWN	TAN	GREEN	BLUE
POWER	POWER INPUT	SAFETY LIMIT	BURNER	FLUE GAS	HEAT PUMP	DHW PUMP	RECIRC PUMP	ROOM SENSOR	TANK SENSOR		OUTDOOR SENSOR
ZM 1	Netz	Si-Gerate	Brenner	Abgasuberwachung	PH-HK1	PS	PWF				
			+ 4 8 9 10 11 12 8 8 8 8 8 8 8	+ N 1 2 3 4 日日日日日日	N H + 61 63 日日日	N H +2425 日日↓月	N H ∔ 13 14 日日日	BF 12 日日	FB 12 EL/E	FК 12 日日	FA 12 日日
	Vac _ SUPPLY		PUMP RELAY BIGICICICA P2 P3 P				PS				

APPLICATION ECO-004 / ELECTRICAL


DESCRIPTION:

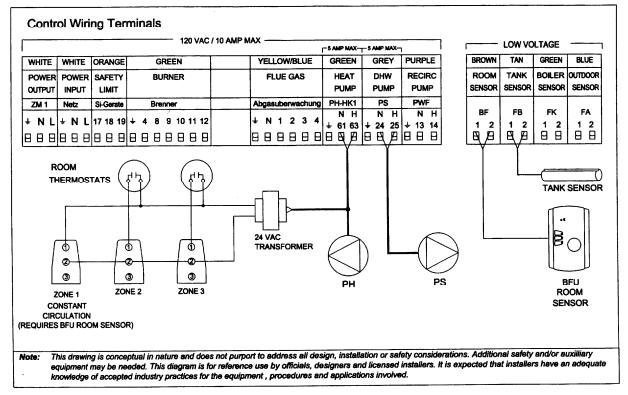
Multi-Zone Space Heating / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- This application requires a multi-zone pump relay (not supplied by Buderus).
- 120v output from terminal 63 (PH-HK1) will energize the relay. However, the PH-HK1 circuit is limited to a 5 amp maximum load. Therefore, multi-pump applications require an additional source of 120v power to the pump relay. Generally the #63 terminal is wired to the ZC terminal on the relay panel, however relay circuitry can vary. Refer to wiring diagrams provided in this manual for specific manufacturer and model of the relay being used. If the model being used is not listed, contact Buderus for assistance.
- Each zone pump is energized on a call for heat from its respective room thermostat. The end switch of the relay panel is not used.
- Power to the pump relay shall be interrupted under the following conditions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on. 17

APPLICATION ECO-005 / MECHANICAL


DESCRIPTION:

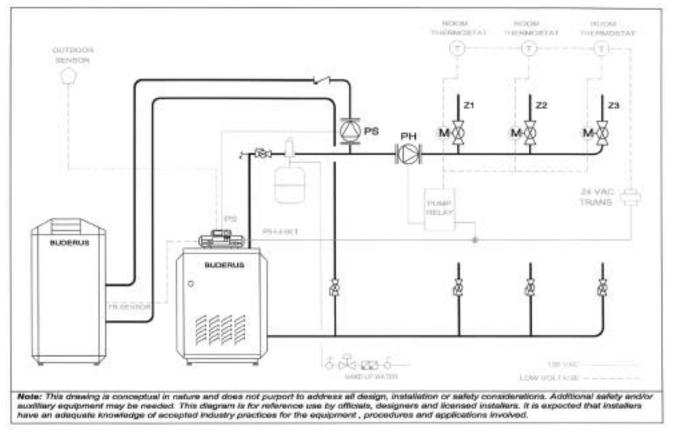
Multi-Zone Space Heating using Zone Valves (with constant circulation zone) / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve and inputs from the outdoor sensor and indoor room sensor.
- During setback periods, the boiler temperature will be reduced based on the night setback setting on the BF room sensor.
- Constant circulation zone (Z1): Zone valve will be powered open when the PH-HK1 circuit is on.
- Additional zone valves will open on a call for heat from their respective room thermostats.
- The PH-HK1 circuit and space heating pump (PH) shall have continuous power with following exceptions: 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
 - 4) Initial part of setback period
- This application requires a BF room sensor.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-005 / ELECTRICAL


DESCRIPTION:

Multi-Zone Space Heating using Zone Valves (with constant circulation zone) / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA), boiler sensor (FK) and room sensor (BF).
- This application requires a 24 vac transformer to power zone valves (not supplied by Buderus). Transformer must be sized per manufacturers instructions.
- 120v output from terminal 61 & 63 (PH-HK1) will provide power to both the space heating pump (PH) and the 24 vac transformer.
- The constant circulation zone valve (Z1) will be powered directly from the transformer.
- Additional zone valves open on a call for heat from their respective thermostats. Zone valve end switches are not used.
- The PH-HK1 circuit and space heating pump (PH) shall have continuous power with the following exceptions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
 - 4) Initial part of setback period
- This application requires a room sensor for constant circulation.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-006 / MECHANICAL

DESCRIPTION:

Multi-Zone Space Heating using Zone Valves / Indirect DHW Heating

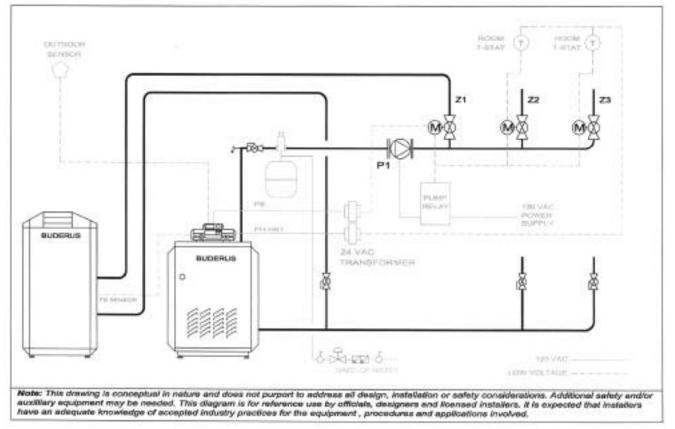
Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Ecomatic control.
- All zones require a call for heat from their respective room thermostats to open zone valve and operate space-heating pump (PH).
- All zone valves will close when the PH-HK1 circuit is turned off.
- The PH-HK1 circuit shall have continuous power with the following exceptions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a BF room sensor.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

			120 VAC	/ 10 AMP MAX	-5 AMP MAX-	5 AMP MAX-	, , , , , , , , , , , , , , , , , , , ,	r	LOW VC	LTAGE	
WHITE	WHITE	ORANGE	GREEN	YELLOW/BLUE	GREEN	GREY	PURPLE	BROWN	TAN	GREEN	BLUE
POWER OUTPUT	POWER	SAFETY LIMIT	BURNER	FLUE GAS	HEAT PUMP	dhw Pump	RECIRC PUMP	ROOM SENSOR	TANK SENSOR	BOILER SENSOR	
ZM 1	Netz	Si-Gerate	Brenner	Abgasuberwachung	PH-HK1	PS	PWF				
		17 18 19 日日日	+ 4 8 9 10 11 12 B B B B B B B	+ N 1 2 3 4 □ □ □ □ □ □ □	N H ∔6163 日日(月		N H ∔ 13 14 日日日	BF 12 日日	FB 12 E\/∄	FК 12 日日	FA 12 日日
				TRANSFORMER			PS			TANKS	SENSOR

APPLICATION ECO-006 / ELECTRICAL


DESCRIPTION:

Multi-Zone Space Heating using Zone Valves / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- This application requires a 24 vac transformer to power zone valves (not supplied by Buderus). Transformer must be sized per manufacturers instructions.
- This application requires a pump-switching relay (not supplied by Buderus).
- 120v output from terminal 61 & 63 (PH-HK1) will provide power to both the space heating pump relay and the 24 vac transformer.
- Zone valves will open on a call for heat from their respective room thermostats. Zone valve end switches will pull in pump relay to operate space-heating pump (PH).
- The PH-HK1 circuit shall have continuous power with the following exceptions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-007 / MECHANICAL

DESCRIPTION:

Multi-Zone Space Heating using Zone Valves (single system pump) / Indirect DHW Heating

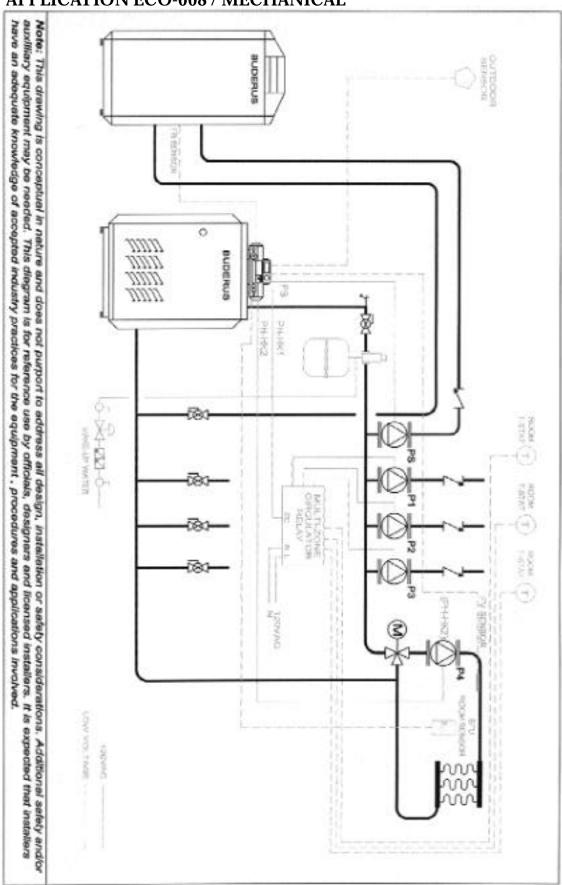
Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Ecomatic control.
- All zones require a call for heat from their respective room thermostats to open zone valve and operate system pump (PH).
- All space heating zone valves will close when the PH-HK1 circuit is turned off.
- The PH-HK1 circuit shall have continuous power with following exceptions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a BF room sensor.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic circuit (PS) and the heating circuit (PH-HK1) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS circuit will be shut down and PH-HK1 circuit will be turned on.
- Although this is a common zone controlling method, Buderus Hydronic Systems does not recommend this application with an Ecomatic control.

120 VAC / 10 AMP MAX													
WHITE POWER OUTPUT ZM 1		WHITE	ORANGE SAFETY LIMIT Si-Gerate	GREEN BURNER		YELLOW/BLUE	HEAT DHV PUMP PUM PH-HK1 PS	GREY	PURPLE	BROWN ROOM SENSOR			SENSOR
						FLUE GAS Abgasuberwachung		DHW PUMP	RECIRC PUMP				
		Netz						PS	PWF				
ו⊧ 1	N L 3 8		17 18 19 8 8 8	+489 8888	9 10 11 12 3 8 8 8	+ N 1 2 3 4 8 8 8 8 8 8 8	н + 61 63 ⊟ БЦ [2]	N H + 24 25 日日月	N H + 13 14 日日日	BF 12 日日	FB 12 E	FК 12 日日	FA 12 日日
						24 VAC TRANSFORMER				() () () () () () () () () ()			(SENSOR
			ZOI	NE 2	ZONE 3			12	NO VAC POWER S		1 (DHW)	I	

APPLICATION ECO-007 / ELECTRICAL


DESCRIPTION:

Multi-Zone Space Heating using Zone Valves (single system pump) / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- This application requires two 24 vac transformers to power zone valves (not supplied by Buderus). Transformers must be sized per manufacturers instructions.
- This application requires a pump-switching relay (not supplied by Buderus).
- 120v output from terminal 61 & 63 (PH-HK1) will provide power to both the space heating pump relay and a 24 vac transformer for space heating zone valves.
- 120v power source must be provided for pump relay (do no wire pump relay to PH-HK1 circuit).
- Zone valves will open on a call for heat from their respective room thermostats. Zone valve end switches will pull in the pump relay to operate system pump (P1).
- The PH-HK1 circuit shall have continuous power with the following exceptions:
 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) will provide power to transformer for DHW zone valve. The transformer will directly power open DHW zone valve (Z1) and the end switch will pull in the system pump (P1).
- During a call for DHW production the domestic circuit (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS circuit will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-008 / MECHANICAL

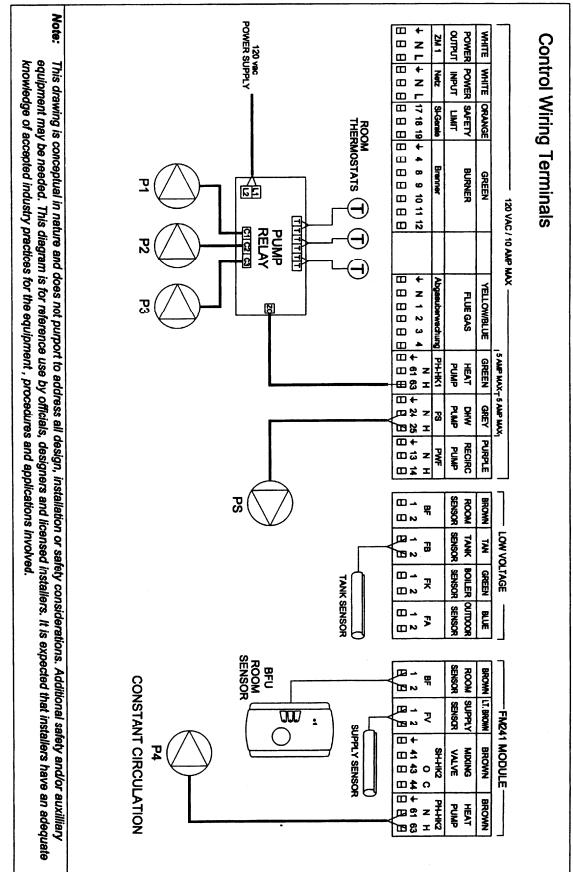
APPLICATION ECO-008 / MECHANICAL

DESCRIPTION:

Multi-Zone High Temp Space Heating / Radiant Floor Heating with FM241 module and Motorized Mixing Valve / Indirect DHW Heating

Space Heating Operation:

HK1 circuit (high temperature)


- Boiler temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Ecomatic control.
- Space heating pumps require a multi-zone switching relay to operate on a call for heat from a room thermostat.
- The PH-HK1 circuit shall be wired to the multi-zone pump relay to interrupt power to the space heating pumps under the following conditions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for high temperature space heating.

HK2 circuit (mixed temperature)

- Mixed water temperature is maintained based on the selected heating curve and input from the outdoor sensor (FA), supply sensor (FV) and room sensor.
- During setback periods, the boiler temperature will be reduced based on the night setback setting on the room sensor.
- Power to the PH-HK2 circuit is turned off under the following conditions:
 - 1) Initial part of night setback period
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application requires a room sensor for radiant floor heating.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- The PH-HK2 pump will continue to operate during the DHW cycle. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-008 / ELECTRICAL

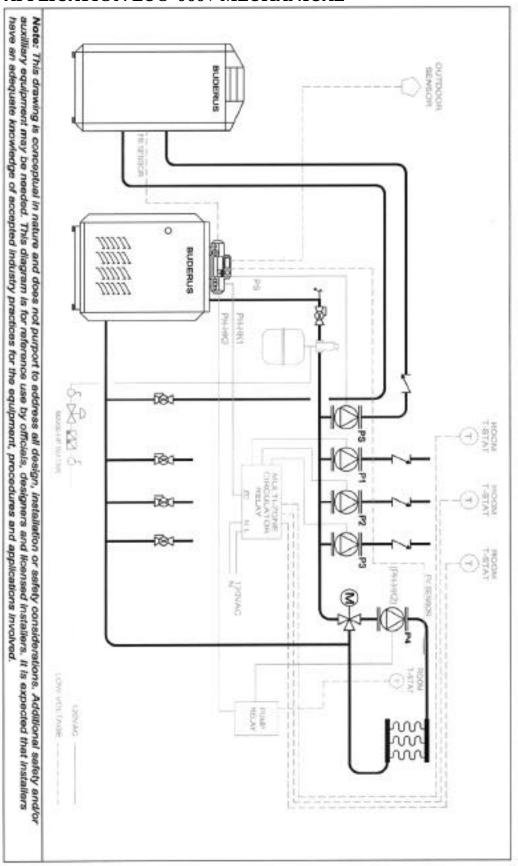
26

APPLICATION ECO-008 / ELECTRICAL

DESCRIPTION:

Multi-Zone High Temp Zone Space Heating / Radiant Floor Heating with FM241 and Motorized Mixing Valve / Indirect DHW Heating

Space Heating Operation:


HK1 circuit (high temperature)

- Boiler temperature is maintained based on the selected heating curve (REF TEMP 1 and OFFSET 1) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- This application requires a multi-zone pump relay (not supplied by Buderus).
- 120v output from terminal 63 (PH-HK1) will energize the relay. However, the PH-HK1 circuit is limited to a 5 amp maximum load. Therefore, multi-pump applications require an additional source of 120v power to the pump relay. Generally the #63 terminal is wired to the ZC terminal on the relay panel, however relay circuitry can vary. Refer to wiring diagrams provided in this manual for specific manufacturer and model of the relay being used. If the model being used is not listed, contact Buderus for assistance.
- Each zone pump is energized on a call for heat from its respective room thermostat. The end switch of the relay panel is not used.
- Power to the pump relay shall be interrupted under the following conditions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for high temperature space heating.

HK2 circuit (mixed temperature)

- Mixed water temperature is maintained based on the selected heating curve (REF TEMP 2 and OFFSET 2) and inputs from the outdoor sensor (FA), supply sensor (FV) and room sensor (BF).
- 120v output from terminal 61 & 63 (PH-HK2) provide power to pump P4. The PH-HK2 circuit is limited to a 2 amp maximum draw. It is important that the amp rating of the pump be verified to ensure that the circuit is not overloaded. Use an isolation relay if max amp rating is exceeded.
- This application requires a BF room sensor for radiant floor heating.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.
- During the DHW cycle the PH-HK2 circuit remains on. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)

APPLICATION ECO-009 / MECHANICAL

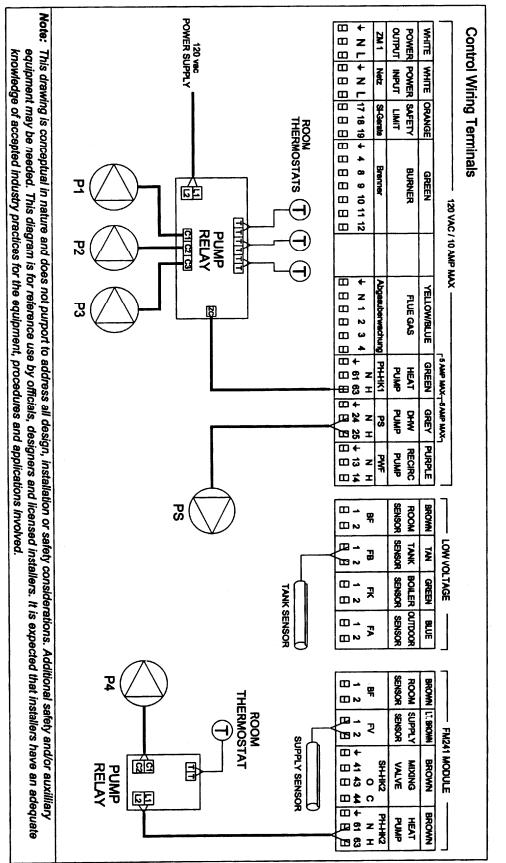
APPLICATION ECO-009 / MECHANICAL

DESCRIPTION:

Multi-Zone High Temp Space Heating / Radiant Floor Heating with FM241 module and Motorized Mixing Valve (no constant circulation zones) / Indirect DHW Heating

Space Heating Operation:

HK1 circuit (high temperature)


- Boiler temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP 1 and NIGHT TEMP 2 settings on the Ecomatic.
- Space heating pumps require a multi-zone switching relay to operate on a call for heat from a room thermostat.
- The PH-HK1 circuit shall be wired to the multi-zone pump relay to interrupt power to the space heating pumps under the following conditions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for high temperature space heating.

HK2 circuit (mixed temperature)

- Mixed water temperature is maintained based on the selected heating curve and input from the outdoor sensor (FA) and supply sensor (FV).
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP 2 and NIGHT TEMP 2 settings on the Ecomatic.
- The PH-HK2 circuit requires a pump switching relay to operate pump P4 on call for heat from a room thermostat.
- Power to the PH-HK2 circuit is turned off under the following conditions:
 - 1) Initial part of night setback period
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for radiant floor heating.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- The PH-HK2 pump will continue to operate during the DHW cycle. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-009 / ELECTRICAL

30

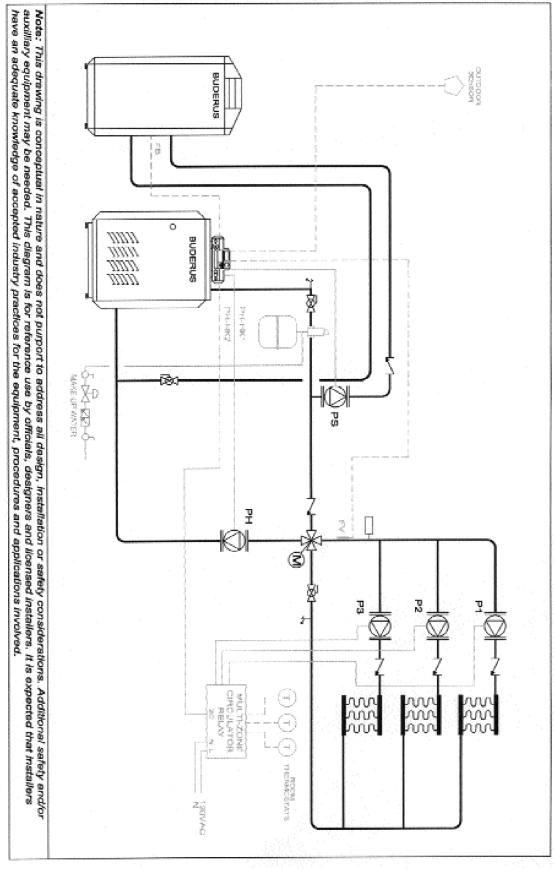
APPLICATION ECO-009 / ELECTRICAL

DESCRIPTION:

Multi-Zone High Temp Zone Space Heating / Radiant Floor Heating with FM241 and Motorized Mixing Valve (no constant circulation zones) / Indirect DHW Heating

Space Heating Operation:

HK1 circuit (high temperature)


- Boiler temperature is maintained based on the selected heating curve (REF TEMP 1 and OFFSET 1) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- This application requires a multi-zone pump relay (not supplied by Buderus).
- 120v output from terminal 63 (PH-HK1) will energize the relay. However, the PH-HK1 circuit is limited to a 5 amp maximum load. Therefore, multi-pump applications require an additional source of 120v power to the pump relay. Generally the #63 terminal is wired to the ZC terminal on the relay panel, however relay circuitry can vary. Refer to wiring diagrams provided in this manual for specific manufacturer and model of the relay being used. If the model being used is not listed, contact Buderus for assistance.
- Each zone pump is energized on a call for heat from its respective room thermostat. The end switch of the relay panel is not used.
- Power to the pump relay shall be interrupted under the following conditions:
 - 1) DHW priority
 - 2) Condensate protection
 - 3) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for high temperature space heating.

HK2 circuit (mixed temperature)

- Mixed water temperature is maintained based on the selected heating curve (REF TEMP 2 and OFFSET 2) and inputs from the outdoor sensor (FA) and supply sensor (FV).
- 120v output from terminals 61 & 63 (PH-HK2) provide power to pump relay. The PH-HK2 circuit is limited to a 2 amp maximum draw. It is important to verify the total amp rating for this circuit. Use an isolation relay if max amp rating is exceeded.
- This application does not require a room sensor for radiant floor heating.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.
- During the DHW cycle the PH-HK2 circuit remains on. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)

APPLICATION ECO-010 / MECHANICAL

32

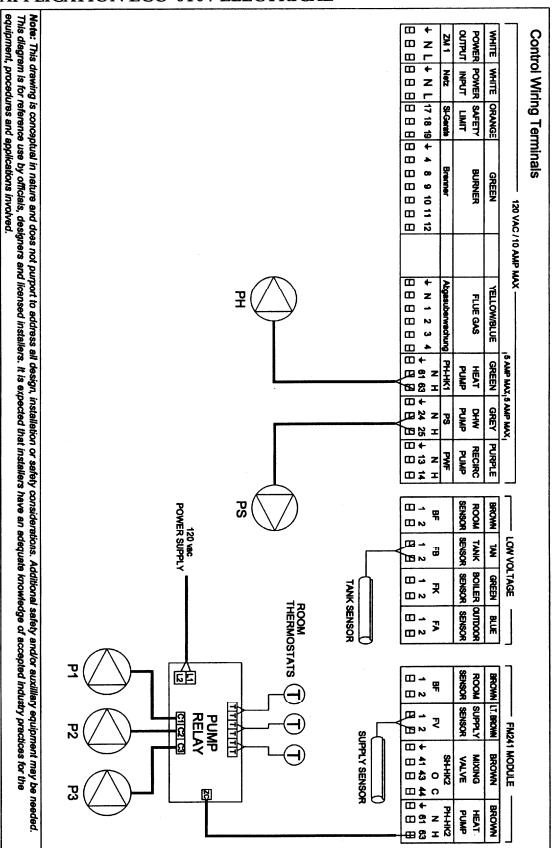
APPLICATION ECO-010 / MECHANICAL

DESCRIPTION:

Multi-Zone Radiant Floor Heating with FM241 module and Motorized Mixing Valve / Indirect DHW Heating

Space Heating Operation:

HK1 circuit (high temperature)


- System pump PH shall run continuously with the following exception:
 - 1) Condensate protection
 - 2) Outdoor temperature exceeds WWSD setpoint
 - 3) DHW priority
- The system pump may also shut down during the initial part of night setback period if a BF room sensor is being used for high temperature space heating.

To simplify this application, it is being shown without high temperature space heating. Refer to previous application diagrams for high temp heating.

HK2 circuit (mixed temperature)

- Water temperature is modulated based on the selected heating curve and input from the outdoor (FA) and supply (FV) sensors.
- During setback periods, the water temperature can be reduced based on the DAY TEMP 2 and NIGHT TEMP 2 settings.
- Space heating pumps (P1,P2,P3) require a multi-zone pump relay to operate on a call for heat from room thermostats.
- The PH-HK2 circuit shall be wired to the multi-zone pump relay to interrupt power to the space heating pumps under the following conditions:
 - 1) Condensate protection
 - 2) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for radiant floor heating.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- The PH-HK2 circuit will remain on during the DHW cycle. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-010 / ELECTRICAL

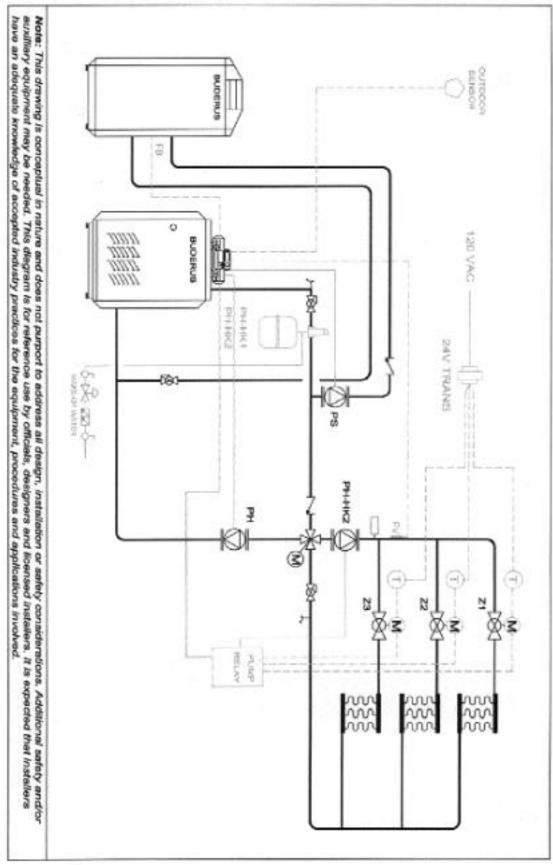
APPLICATION ECO-010 / ELECTRICAL

DESCRIPTION:

Radiant Floor Heating with FM241 and Motorized Mixing Valve / Indirect DHW Heating

Space Heating Operation:

HK1 circuit (high temperature)


• 120v output from terminals 61 & 63 (PH-HK1) provide power to the system pump (PH).

HK2 circuit (mixed temperature)

- Mixed water temperature is maintained based on the selected heating curve (REF TEMP 2 and OFFSET 2) and inputs from the outdoor sensor (FA) and supply sensor (FV).
- This application requires a multi-zone pump relay (not supplied by Buderus).
- 120v output from terminal 63 (PH-HK2) will energize the relay. However, the PH-HK2 circuit is limited to a 2 amp maximum load. Therefore, multi-pump applications require an additional source of 120v power to the pump relay. Generally the #63 terminal is wired to the ZC terminal on the relay panel, however relay circuitry can vary. Refer to wiring diagrams provided in this manual for specific manufacturer and model of the relay being used. If the model being used is not listed, contact Buderus for assistance.
- Each zone pump is energized on a call for heat from its respective room thermostat. The end switch of the relay panel is not used.
- Power to the pump relay shall be interrupted under the following conditions:
 - 1)Condensate protection
 - 2)Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for radiant floor heating.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.
- During the DHW cycle the PH-HK2 circuit remains on. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)

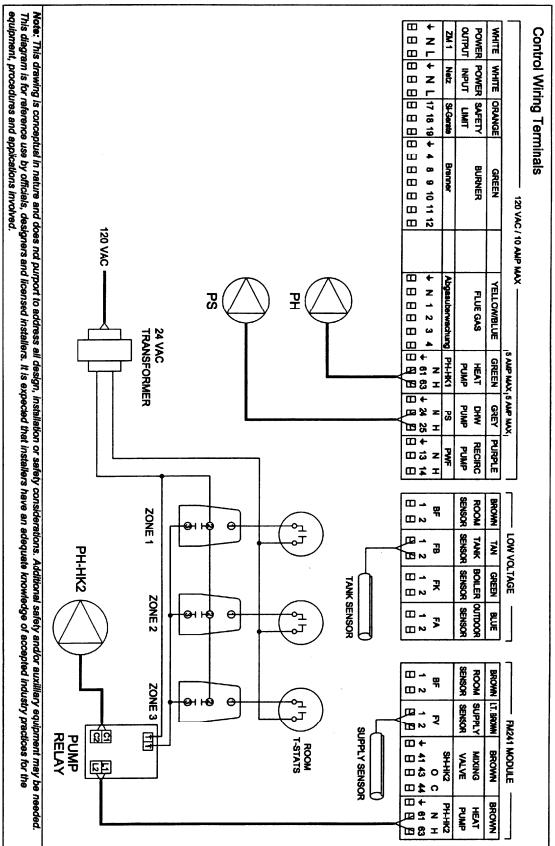
APPLICATION ECO-011 / MECHANICAL

APPLICATION ECO-011 / MECHANICAL

DESCRIPTION:

Multi-Zone Radiant Floor Heating (using zone valves) with FM241 module and Motorized Mixing Valve / Indirect DHW Heating

Space Heating Operation:


HK1 circuit (high temperature)

- System pump PH shall run continuously with the following exception:
 - 1)Condensate protection
 - 2) Outdoor temperature exceeds WWSD setpoint
 - 3) DHW priority
- The system pump may also shut down during the initial part of night setback period if a BF room sensor is being used for high temperature space heating.
- To simplify this application, it is being shown without high temperature space heating. Refer to previous application diagrams for high temp heating.

HK2 circuit (mixed temperature)

- Water temperature is modulated based on the selected heating curve and input from the outdoor (FA) and supply (FV) sensors.
- During setback periods, the water temperature can be reduced based on the DAY TEMP 2 and NIGHT TEMP 2 settings.
- All zones require a call for heat from a room thermostat to open zone valve and operate space-heating pump (PH-HK2).
- Power to the PH-HK2 circuit shall be interrupted under the following conditions:
 - 1)Condensate protection
 - 2) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for radiant floor heating.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- The PH-HK2 circuit will remain on during the DHW cycle. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-011 / ELECTRICAL

APPLICATION ECO-011 / ELECTRICAL

DESCRIPTION:

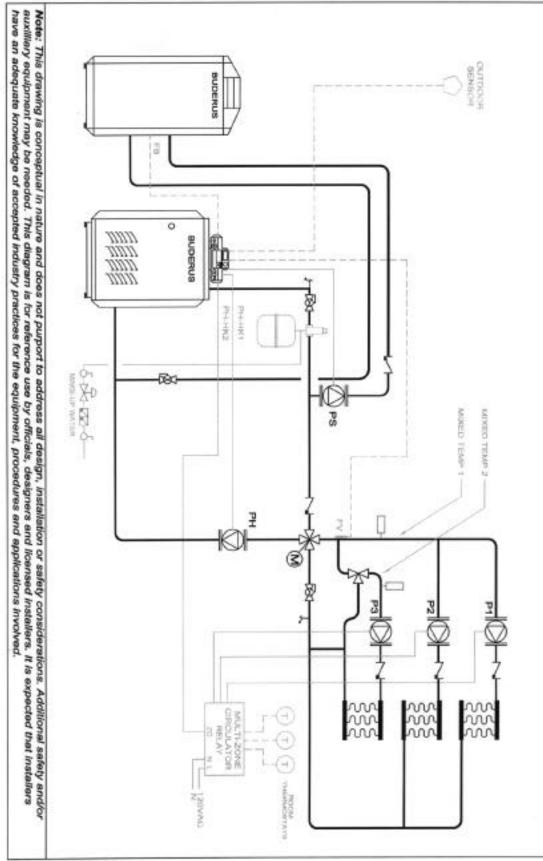
Radiant Floor Heating (using zone valves) with FM241 and Motorized Mixing Valve / Indirect DHW Heating

Space Heating Operation:

HK1 circuit (high temperature)

- Boiler temperature is maintained based on the selected heating curve (REF TEMP 1 and OFFSET 1) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- 120v output from terminals 61 & 63 (PH-HK1) provide power to the system pump (PH).

HK2 circuit (mixed temperature)


- Mixed water temperature is maintained based on the selected heating curve (REF TEMP 2 and OFFSET 2) and inputs from the outdoor sensor (FA) and supply sensor (FV).
- This application requires a pump-switching relay (not supplied by Buderus).
- 120v output from terminal 63 (PH-HK2) will energize the relay. The PH-HK2 circuit is limited to a 2 amp maximum load. It is important to verify the total amp rating for this circuit. Use an isolation relay if max amp rating is exceeded.
- Zone valves require a 24 vac transformer (no supplied by Buderus). 120 vac power source must be provided for transformer.
- Zone valves will open on a call for heat from their respective room thermostats. Zone valve end switched will pull in the pump relay to operate pump (PH-HK2).
- Power to the PH-HK2 circuit shall be interrupted under the following conditions: 1)Condensate protection

2)Outdoor temperature exceeds WWSD setpoint

• This application does not require a room sensor for radiant floor heating.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.
- During the DHW cycle the PH-HK2 circuit remains on. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)

APPLICATION ECO-012 / MECHANICAL

APPLICATION ECO-012 / MECHANICAL

DESCRIPTION:

Two Temperature Multi-Zone Radiant Floor Heating with FM241 module and Motorized Mixing Valve / Indirect DHW Heating

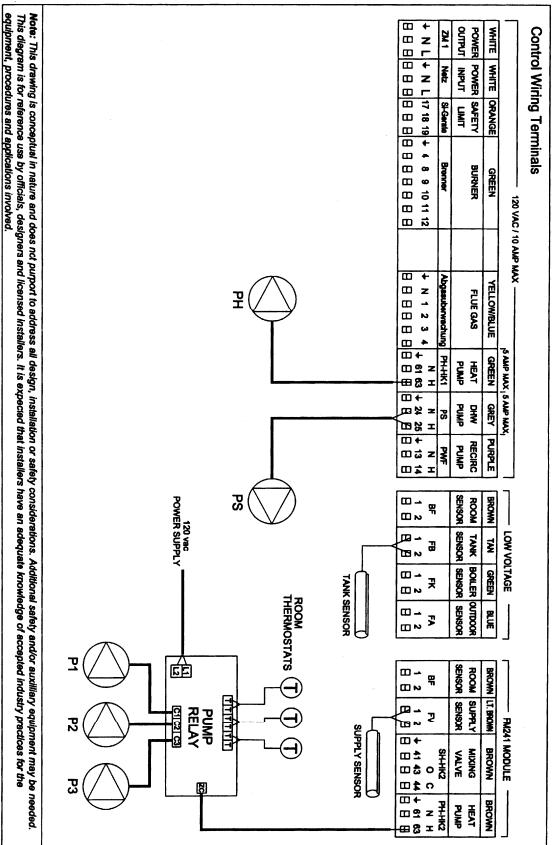
Space Heating Operation:

HK1 circuit (high temperature)

- System pump PH shall run continuously with the following exceptions:
 - 1)Condensate protection
 - 2) Outdoor temperature exceeds WWSD setpoint
 - 3) DHW priority
- The system pump may also shut down during the initial part of night setback period if a BF room sensor is being used for high temperature space heating.

To simplify this application, it is being shown without high temperature space heating. Refer to previous application diagrams for high temp heating.

HK2 circuit (mixed temperature)


- Water temperature (1) is modulated based on the selected heating curve and input from the outdoor (FA) and supply (FV) sensors.
- The 4-way mixing valve modulates mixed water temperature (1) based on the selected heating curve with inputs from the supply sensor (FV) and the outdoor sensor (FA).
- The 3-way mixing valve is set manually and proportionately modulates water temperature based on the supply temperature from the 4-way valve.
- Space heating pumps (P1,P2,P3) require a multi-zone pump relay to operate on a call for heat from room thermostats.
- The PH-HK2 circuit shall be interrupted under the following conditions:
 - 1)Condensate protection
 - 2)Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for radiant floor heating.

DHW Heating Operation:

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- The PH-HK2 circuit will remain on during the DHW cycle. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

4

APPLICATION ECO-012 / ELECTRICAL

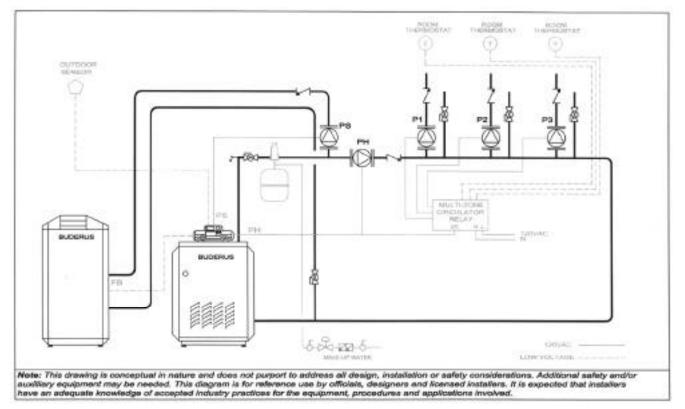
42

APPLICATION ECO-012 / ELECTRICAL

DESCRIPTION:

Two Temperature Multi-Zone Radiant Floor Heating with FM241 and Motorized Mixing Valve / Indirect DHW Heating

Space Heating Operation:


HK1 circuit (high temperature)

• 120v output from terminals 61 & 63 (PH-HK1) provide power to the system pump (PH).

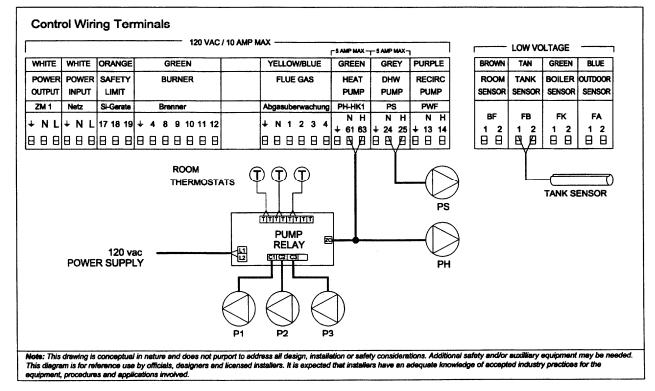
HK2 circuit (mixed temperature)

- Mixed water temperature (1) is maintained based on the selected heating curve (REF TEMP 2 and OFFSET 2) and inputs from the outdoor sensor (FA) and supply sensor (FV). Mixed water temperature (2) is proportionate to mixed temp (1).
- This application requires a multi-zone pump relay (not supplied by Buderus).
- 120v output from terminal 63 (PH-HK2) will energize the relay. The PH-HK2 circuit is limited to a 2 amp maximum load. Therefore, multi-pump applications require an additional source of 120v power to the pump relay. Generally the #63 terminal is wired to the ZC terminal on the relay panel, however relay circuitry can vary. Refer to wiring diagrams provided in this manual for specific manufacturer and model of the relay being used. If the model being used is not listed, contact Buderus for assistance.
- Each zone pump is energized on a call for heat from its respective room thermostat. The end switch of the relay panel is not used.
- Power to the PH-HK2 circuit shall be interrupted under the following conditions:
 - 1) Condensate protection
 - 2) Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor for radiant floor heating.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.
- During the DHW cycle the PH-HK2 circuit remains on. The mixing valve can be set to either continue normal operation or fully close to prioritize DHW production. (Refer to the Ecomatic Service Manual for setting options)

APPLICATION ECO-013 / MECHANICAL

DESCRIPTION:


Multi-Zone Space Heating with Primary/Secondary Piping / Indirect DHW Heating

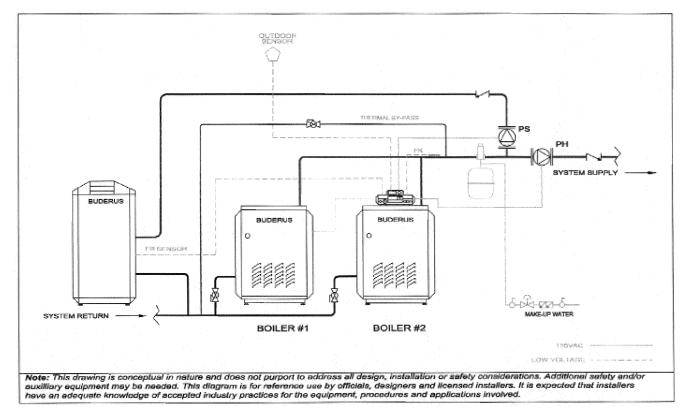
Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Ecomatic control.
- Space heating pumps require a multi-zone switching relay to operate on a call for heat from a room thermostat.
- Power to the PH-HK1 circuit shall be interrupted under the following conditions:
 - 1)DHW priority
 - 2)Condensate protection
 - 3)Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor.

Note: Standard primary/secondary piping practice requires a maximum spacing of 12î

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-013 / ELECTRICAL


DESCRIPTION:

Multi-Zone Zone Space Heating with Primary/Secondary Piping / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- This application requires a multi-zone pump relay (not supplied by Buderus).
- 120v output from terminal 63 (PH-HK1) will energize the relay. However, the PH-HK1 circuit is limited to a 5 amp maximum load. Therefore, multi-pump applications require an additional source of 120v power to the pump relay. Generally the #63 terminal is wired to the ZC terminal on the relay panel, however relay circuitry can vary. Refer to wiring diagrams provided in this manual for specific manufacturer and model of the relay being used. If the model being used is not listed, contact Buderus for assistance.
- Each zone pump is energized on a call for heat from its respective room thermostat. The end switch of the relay panel is not used.
- 120v output from terminals 61& 63 (PH-HK1) will provide power to the primary pump (PH)
- Power to the PH-HK1 circuit shall be interrupted under the following conditions:
 - 1)DHW priority 2)Condensate protection
 - 3)Outdoor temperature exceeds WWSD setpoint
- This application does not require a room sensor.

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

APPLICATION ECO-014 / MECHANICAL

DESCRIPTION:

Parallel Boiler Piping using FM242 module / Indirect DHW Heating

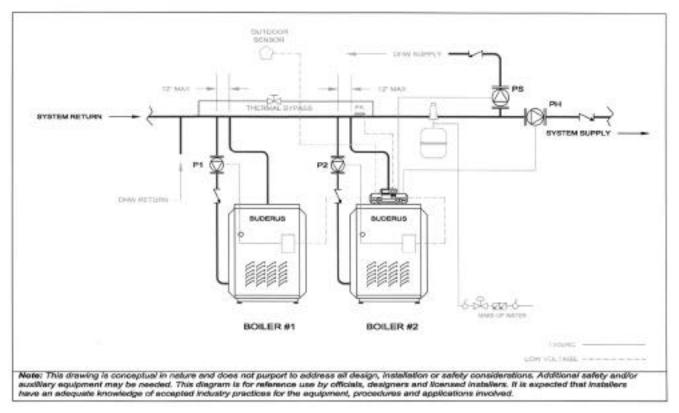
Space Heating Operation:

- System temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Ecomatic control.
- Power to the PH circuit shall be interrupted under the following exceptions:
 - 1)DHW priority
 - 2)Condensate protection
 - 3)Outdoor temperature exceeds WWSD setpoint

- The system temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH circuit will be turned on.
- Notes: 1) Boilers shall be piped in a reverse return arrangement to ensure equal flow through each boiler.
 2) A small thermal bypass shall be installed immediately after the FK supply sensor in order to create flow past the sensor when the system pump (PH) is off.

	120 VAC / 10 AMP MAX									LOW VOLTAGE				FM242 MODULE			1
WHITE	WHITE	ORANGE	GREEN		YELLOW/BLUE	GREEN	GREY	PURPLE	BROWN	TAN	GREEN	BLUE	WHITE		1		
POWER	POWER INPUT	SAFETY LIMIT	BURNER		FLUE GAS	HEAT PUMP	DHW PUMP	RECIRC PUMP	ROOM SENSOR	TANK SENSOR	BOILER SENSOR	OUTDOOR SENSOR	STAGING MODULE				
ZM 1	Netz	SI-Gerate	Brenner		Abgasuberwachung		PS	PWF		_							
NL	+ N L	17 18 19	+ 4 8 9 10 11 12		4 N 1 2 3 4	N H	N H + 24 25	N H	BF 12	FB 12	FK 12	FA 1 2	36	37	38	39	
88	888	888	8888888		+ N 1 2 3 4 888888	888	88,8	888	e e	e ø	e e	00	Ĩ	Ë	ã	ő	
										L_	TANK	SENSOR	FOR	MIRING	OFS	STAGE	2 BURNER
					PH		L	(PS)							
				¢	PH			(PS)							
				E	PH		L	—(PS)							
					PH			(PS)							
				¢	PH			—(PS								
					PH			—(PS)							

APPLICATION ECO-014 / ELECTRICAL


DESCRIPTION:

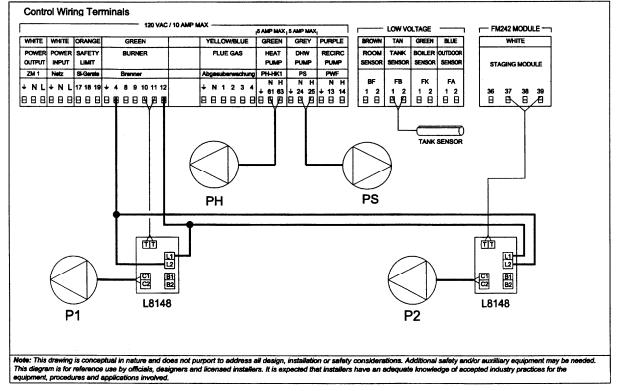
2-stage boiler operation / Parallel Piping / Indirect DHW Heating

Space Heating Operation:

- System temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA) and supply sensor (FK).
- This application requires optional staging module FM242.
- The control will stage either one or two boilers to maintain the desired set point. Refer to control Service Manual for wiring information for burners.
- 120v output from terminals 61 & 63 (PH-HK1) provides power to system pump (PH).
- Power to the PH-HK1 circuit shall be interrupted under the following conditions:
 - 1)DHW priority
 - 1)Condensate protection
 - 1)Outdoor temperature exceeds WWSD setpoint

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH circuit will be turned on.

APPLICATION ECO-015 / MECHANICAL


DESCRIPTION:

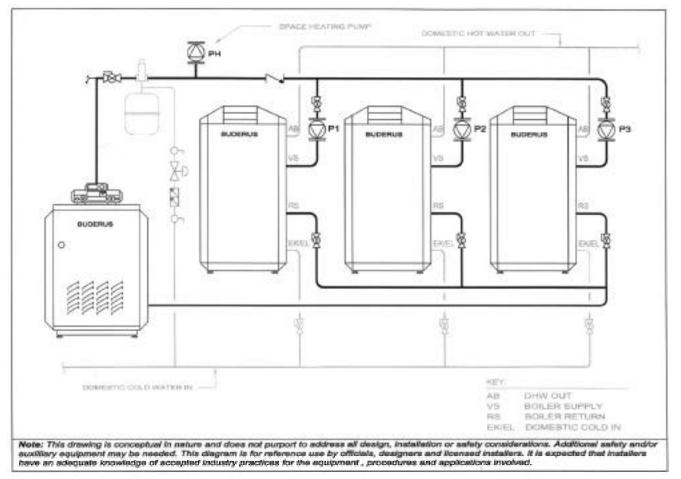
Dual Boiler / Primary/Secondary Boiler Piping using FM242 module / Indirect DHW Heating

Space Heating Operation:

- The primary loop temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- During setback periods, the system temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Buderus control.
- Boiler pumps (P1, P2) shall be wired to the Honeywell L8148 aquastat and will operate on a demand signal from the Ecomatic control.
- The primary pump (PH) shall be powered continuously with the following exceptions:
 - 1)DHW priority
 - 2) Condensate protection
 - 3)Outdoor temperature exceeds WWSD setpoint

- The system temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH circuit will be turned on.
- Notes: 1) Boilers shall be piped in primary/secondary arrangement with a recommended spacing of 4 pipe diameters with a maximum of 12î between the supply and return to the primary loop.
 - 2) A small thermal bypass shall be installed immediately after the FK supply sensor in order to create flow
- 48 past the sensor when the system pump (PH) is off.

APPLICATION ECO-015 / ELECTRICAL


DESCRIPTION:

2-stage boiler operation using FM242 module / Primary-Secondary Piping / Indirect DHW Heating

Space Heating Operation:

- Primary loop temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA) and supply sensor (FK).
- This application requires optional staging module FM242.
- The control will stage either one or two boilers to maintain the desired set point. Refer to control Service Manual for wiring information for burners.
- This electrical diagram addresses only boilers using an operating aquastat/relay with a pump circuit (ex: Honeywell L8148). Both boilers require an L8148 operating control. If this type of aquastat is not being used, please contact Buderus for assistance.
- Boiler pumps (P1 and P2) shall be wired to the L8148 control and will operate on a heat demand signal from the Buderus control.
- 120v output from terminals 61 & 63 (PH-HK1) provides power to system pump (PH).
- Power to the PH-HK1 circuit shall be interrupted under the following conditions: 1)DHW priority
 - 2)Condensate protection
 - 3)Outdoor temperature exceeds WWSD setpoint

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH circuit will be turned on.

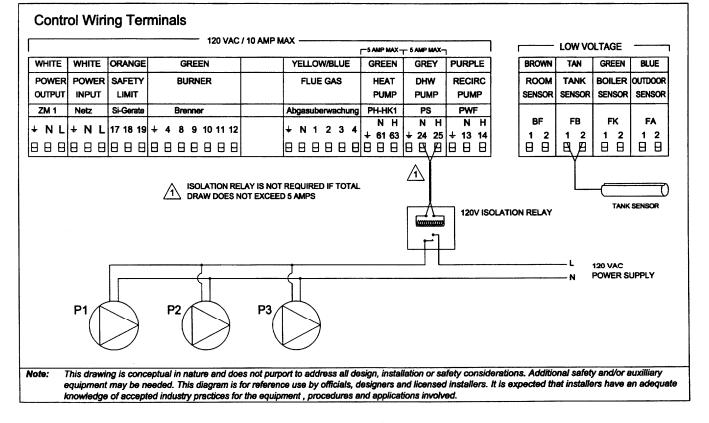
APPLICATION ECO-016 / MECHANICAL

DESCRIPTION:

Indirect DHW Heating with Multiple Tanks (Parallel Piping)

Space Heating Operation:

Refer to previous application drawings for information on space heating.


DHW HEATING:

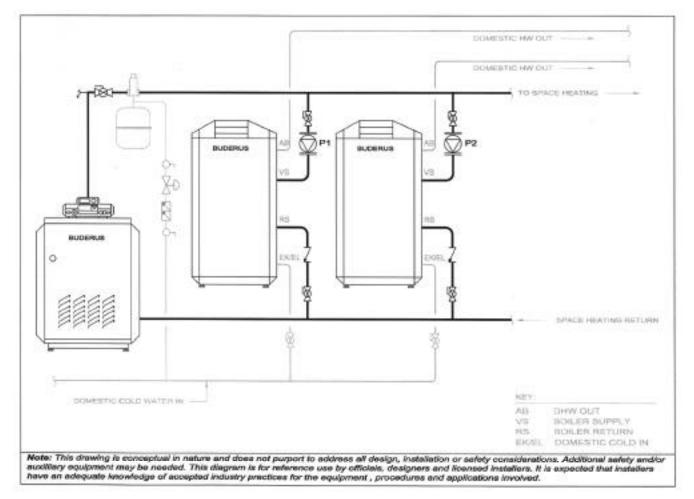
Piping:

- It is important that the tanks be piped in a reverse return arrangement on both the boiler side and the domestic water side. This will ensure equal flow through each tank allowing DHW to draw down and recharge at the same rate.
- It is recommended that each tank have its own pump.
- Install a flow check valve on the common supply piping.

Operation:

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pumps P1, P1, P3 and the heating circuit (PH) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the DHW pump circuit (PS) will be shut down and PH circuit will be turned on.

APPLICATION ECO-016 / ELECTRICAL


DESCRIPTION:

Indirect DHW Heating with Multiple Tanks (Parallel Piping)

Space Heating Operation:

• Refer to previous application drawings for information on space heating.

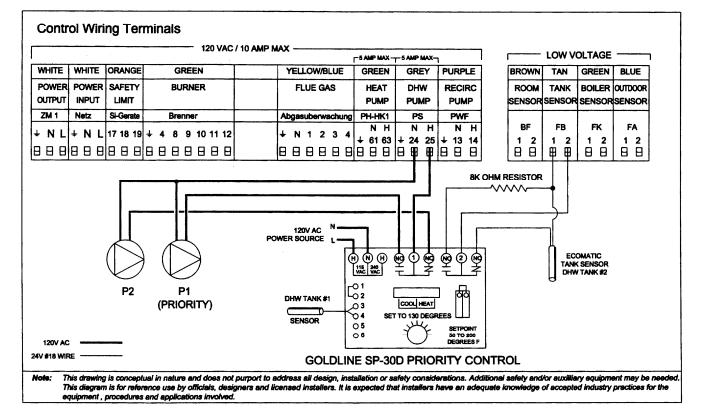
- The tank sensor (FB) monitors domestic water temperature.
- FB tank sensor can be located in any one of the DHW tanks.
- 120v output from terminals 24 & 25 (PS) provides power for the DHW circuit.
- 120v isolation relay will be required if the total draw exceeds 5 amps.
- During a call for DHW production the domestic circuit (PS) is turned on and the space-heating circuit (PH) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS circuit will be shut down and PH circuit will be turned on.

APPLICATION ECO-017 / MECHANICAL

DESCRIPTION:

Indirect DHW Heating with Two Tanks (Priority Load)

Space Heating Operation:


• Refer to previous application drawings for information on space heating.

DHW HEATING:

- Piping:
- This piping arrangement allows the tanks to be remotely located.
- Tanks can maintain different temperatures with one tank having priority.
- Each tank must have its own pump.
- Install a flow check for each tank.

Operation:

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump P1 or P2 and the heating circuit (PH) is shut down.
- Tank #1 must recharge within 30 minutes or the control will go back to space heating and display a DHW ERROR.
- After the DHW recharging and intelligent purge cycle is completed, the DHW pump circuit (PS) will be shut down and PH circuit will be turned on.

APPLICATION ECO-017 / ELECTRICAL

DESCRIPTION:


Indirect DHW Heating with Two Tanks (Priority Load)

Space Heating Operation:

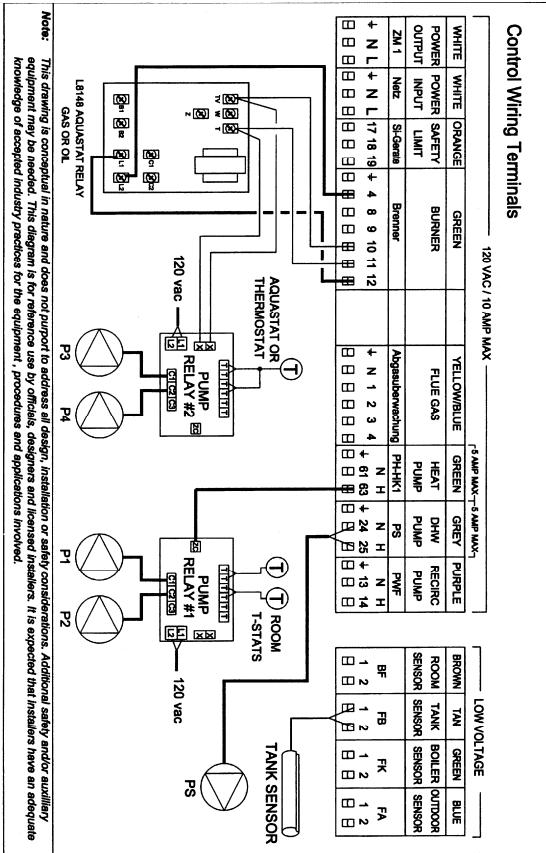
• Refer to previous application drawings for information on space heating.

- One (1) Goldline SP-30D (or equal) priority aquastat is required for this application.
- (SP-30D control is available through Buderus)
- One 8K to 10K OHM resistor is required. (Not supplied by Buderus)
- The SP-30D tank sensor monitors domestic water temperature in tank #1.
- The tank sensor (FB) monitors domestic water temperature in tank #2.
- Both tanks will have priority over space heating. Tank #1 will have priority over tank #2.
- Due to a freeze protection feature in the Buderus reset control, tank #1 must recharge within 30 minutes or the system will go back to space heating and display a DHW error message.
- 120v output from terminals 24 & 25 (PS) provides power for the DHW pump(s).
- Provide 120v power to SP-30D control.
- During a call for DHW production the domestic circuit (PS) is turned on and the space-heating circuit (PH) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS circuit will be shut down and PH circuit will be turned on.

APPLICATION ECO-018 / MECHANICAL

APPLICATION ECO-018 / MECHANICAL

DESCRIPTION:


Multi-Zone Space Heating / On-demand High Temp Heating / Indirect DHW Heating

Space Heating Operation:

- Boiler temperature is maintained based on the selected heating curve and input from the outdoor sensor.
- Boiler will run to high limit on call from on-demand heat zone.
- During setback periods, the boiler temperature will be reduced based on the DAY TEMP and NIGHT TEMP settings on the Ecomatic control.
- Space heating pumps require a multi-zone switching relay to operate on a call for heat from a room thermostat.
- On-demand zone requires a separate switching relay in order to fire the boiler on a call for heat.
- Power to the PH-HK1 circuit shall be interrupted under the following conditions: 1)DHW priority
 - 2)Condensate protection
 - 3)Outdoor temperature exceeds WWSD setpoint
- Note As shown, the on-demand zone is interrupted during DHW priority, WWSD and condensate protection. For year round, 24-hour operation of the on-demand zones, disconnect the PH-HK1 connection from ZC on the pump relay. This will allow the on-demand zone to operate during DHW recharging cycles. Consideration to boiler sizing must be given.

- The boiler temperature rises on a call for DHW for fast recovery.
- The control powers the domestic pump (PS) and the heating circuit (PH-HK1) is shut down.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.

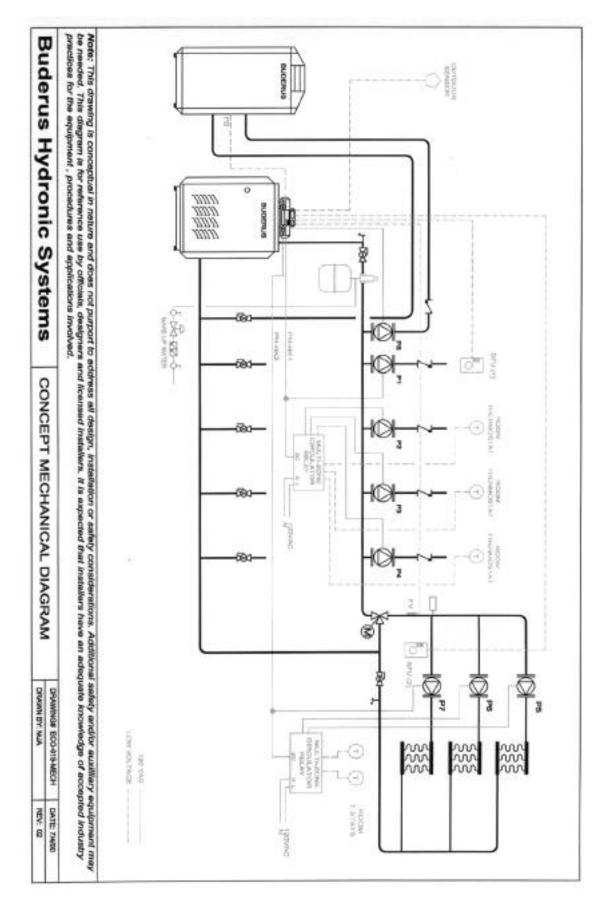
APPLICATION ECO-018 / ELECTRICAL

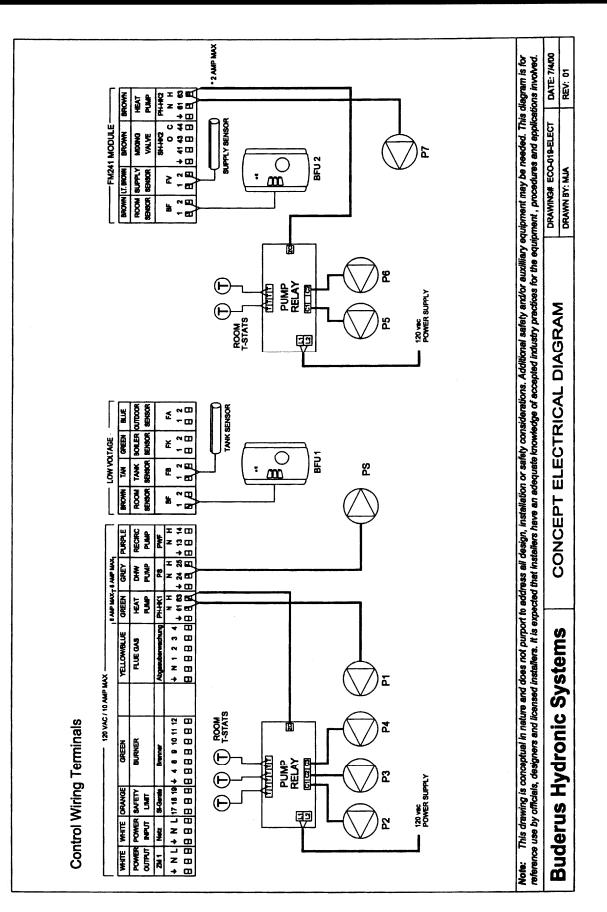
56

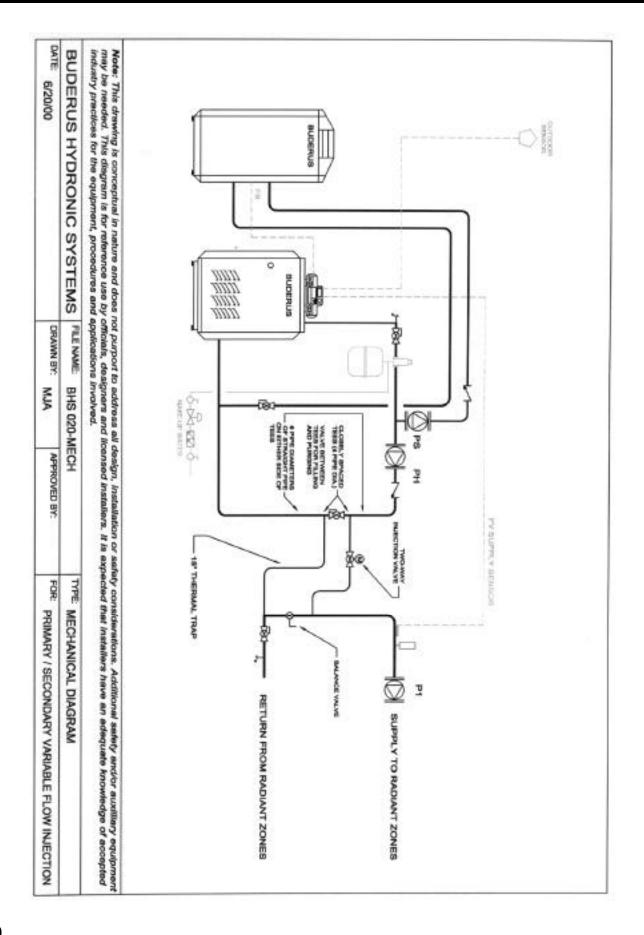
APPLICATION ECO-018 / ELECTRICAL

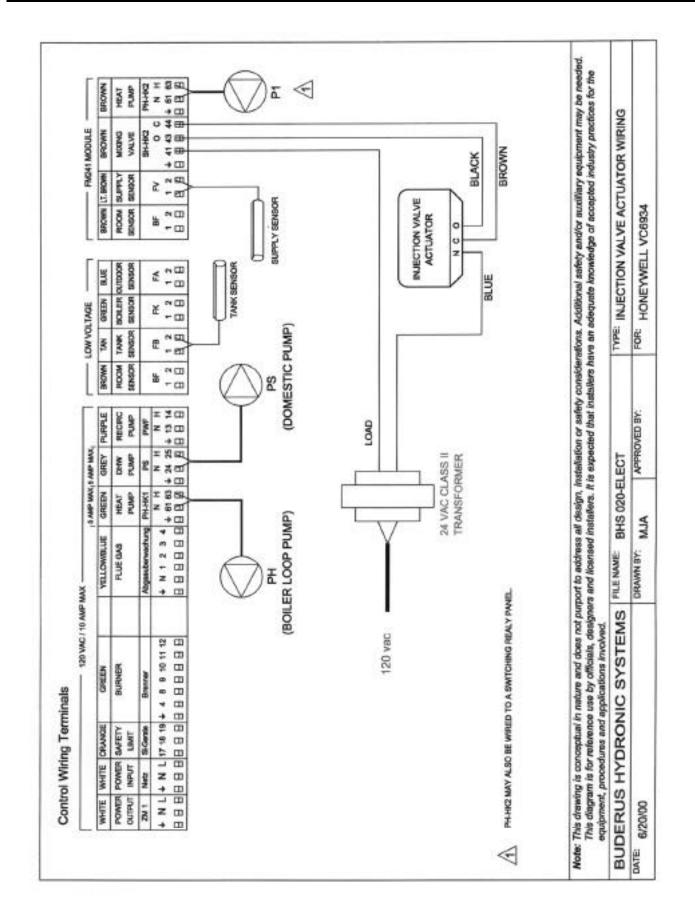
DESCRIPTION:

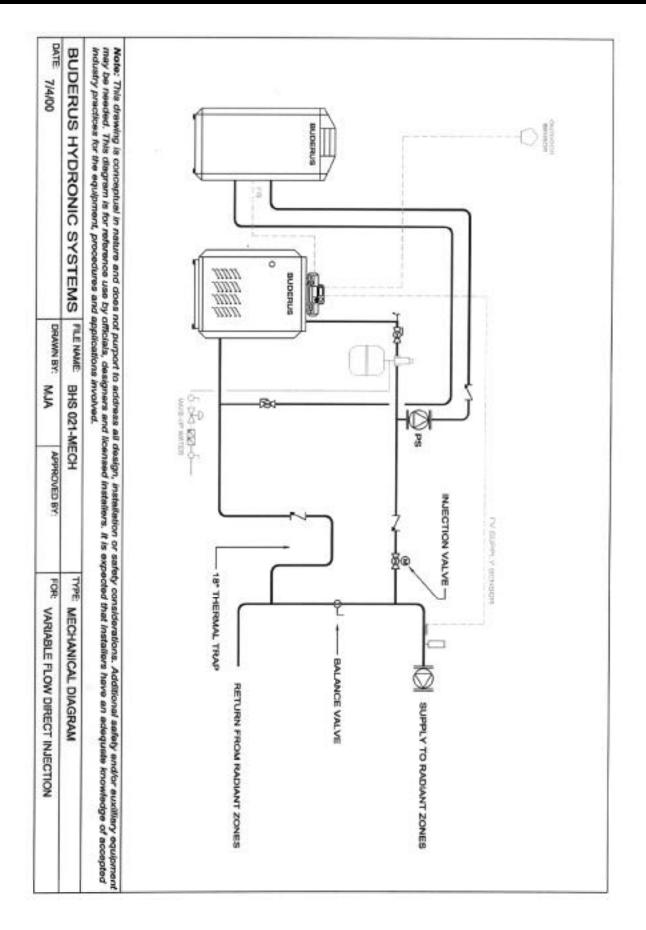
Multi-zone Space Heating / On-demand High Temp Heating / Indirect DHW Heating

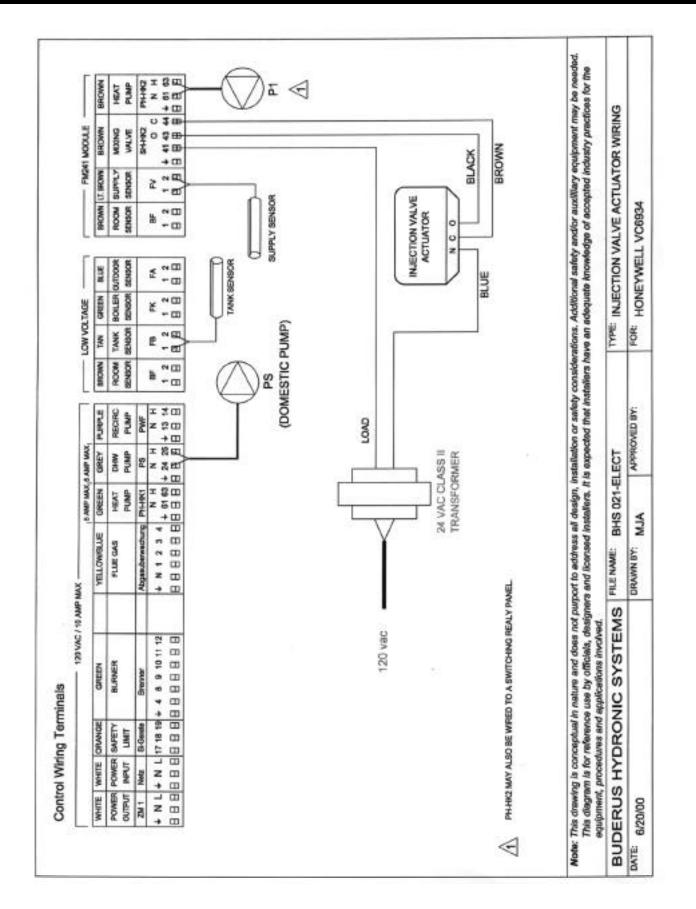

Space Heating Operation:

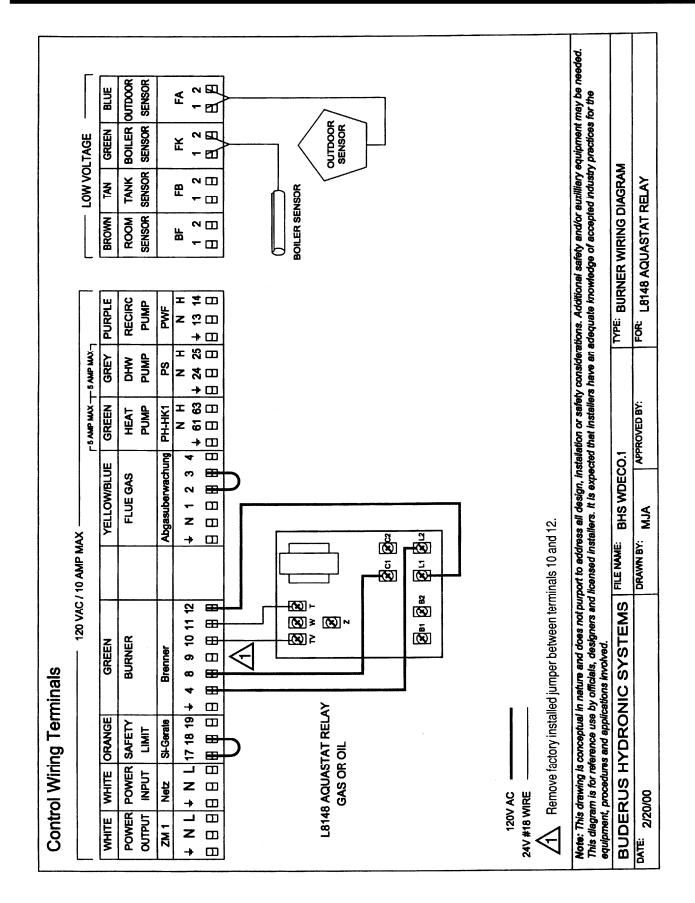

- Boiler temperature is maintained based on the selected heating curve (REF TEMP and OFFSET) and inputs from the outdoor sensor (FA) and boiler sensor (FK).
- Boiler will run to limit set on L8148 aquastat on a call for heat from on-demand zone(s).
- This application requires a multi-zone pump relay (not supplied by Buderus). The on-demand zone also requires a separate pump relay to fire the boiler on a call for heat. When using a heat exchanger as shown, pumps P3 and P4 must run simultaneously. The demand signal from the on-demand zone(s) (aquastat, thermostat or end switch) must be wired to turn both pumps on.
- 120v output from terminal 63 (PH-HK1) will energize pump relay #1. However, the PH-HK1 circuit is limited to a 5 amp maximum load. Therefore, multi-pump applications require an additional source of 120v power to the pump relay. Generally the #63 terminal is wired to the ZC terminal on the relay panel, however relay circuitry can vary. Refer to wiring diagrams provided in this manual for specific manufacturer and model of the relay being used. If the model being used is not listed, contact Buderus for assistance.
- Each zone pump is energized on a call for heat from its respective room thermostat. The end switch of relay panel #1 is not used for regular space heating zones. The end switch of the on-demand zone(s) relay (#2) is wired to T / TV on the L8148 aquastat.
- Power to the pump relay #1shall be interrupted under the following conditions:
 - 1)DHW priority
 - 2)Condensate protection

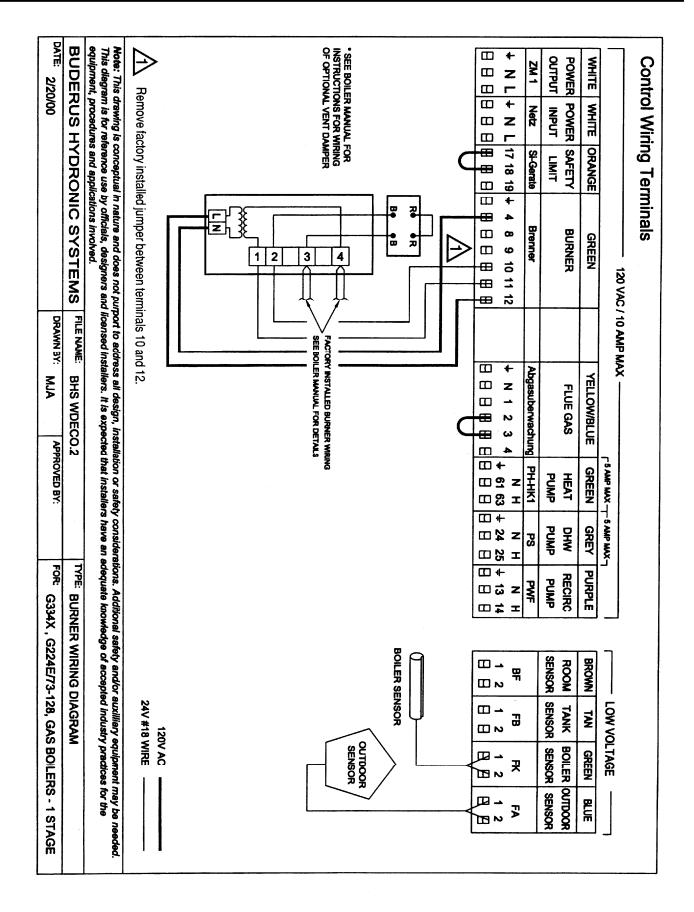

3)Outdoor temperature exceeds WWSD setpoint

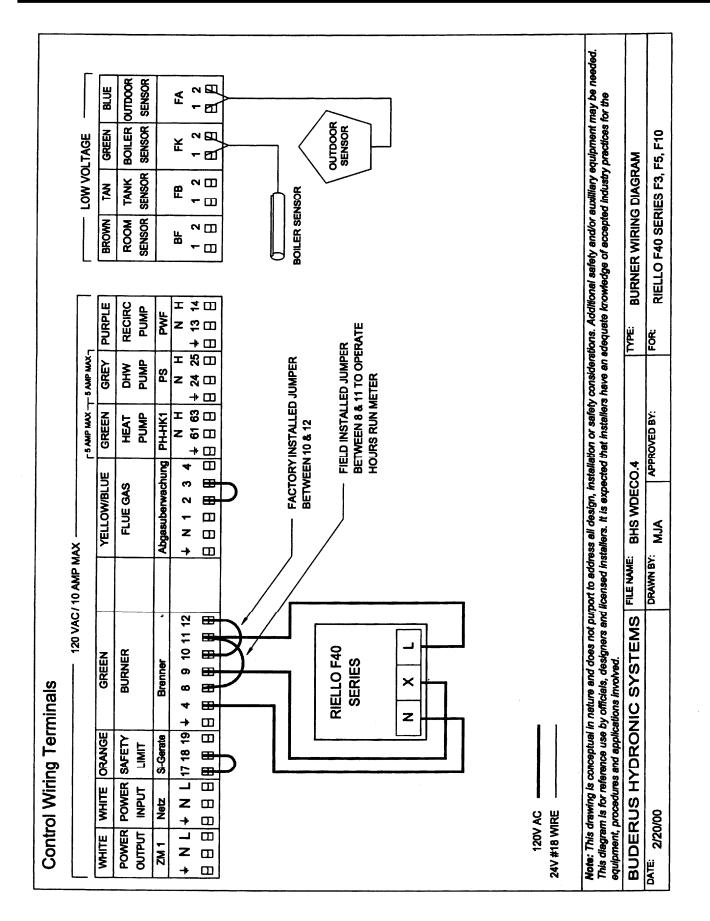

- For year round, 24-hour operation of the on-demand zone(s), do not connect the PH-HK1 to ZC on pump relay #2.
- In order to use a room sensor with this type of application, a standard room thermostat must also be used in the same zone in order to prevent overheating when the on-demand zone is calling.

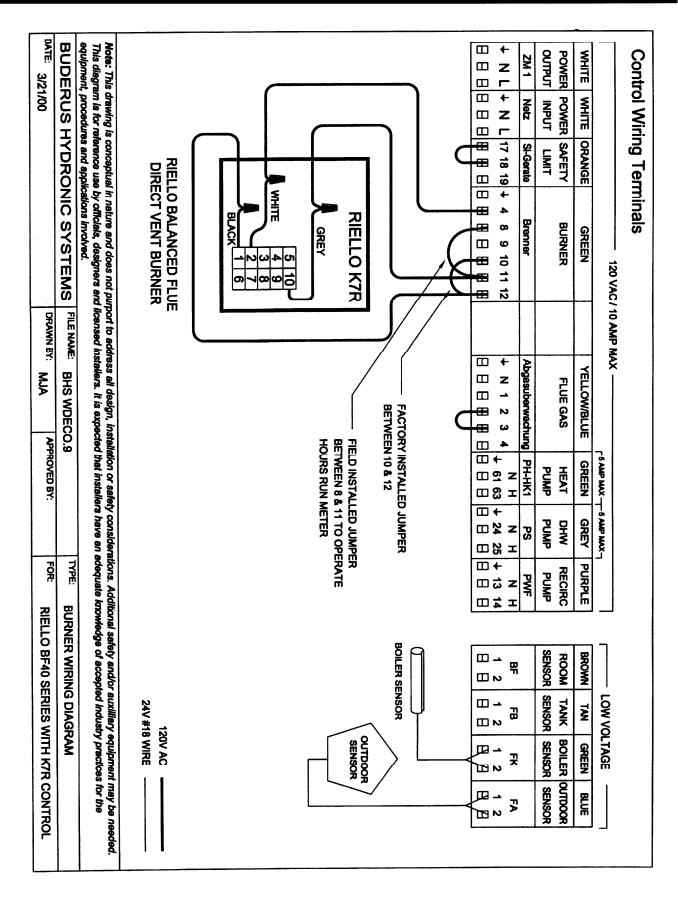

- The tank sensor (FB) monitors domestic water temperature.
- 120v output from terminals 24 & 25 (PS) powers the DHW pump.
- During a call for DHW production the domestic pump (PS) is turned on and the space-heating circuit (PH-HK1) is turned off.
- After the DHW recharging and intelligent purge cycle is completed, the PS pump will be shut down and PH-HK1 circuit will be turned on.



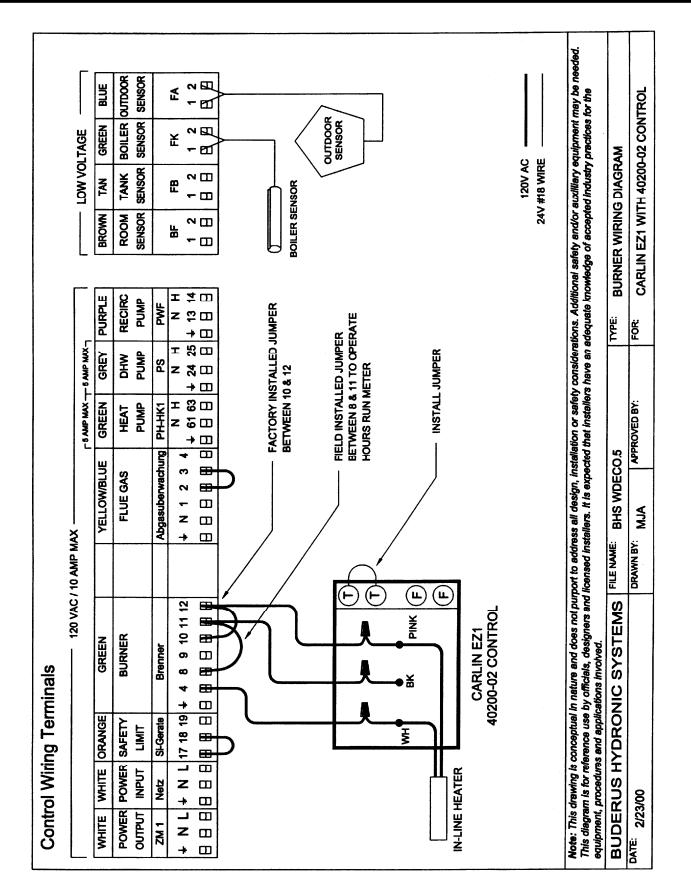


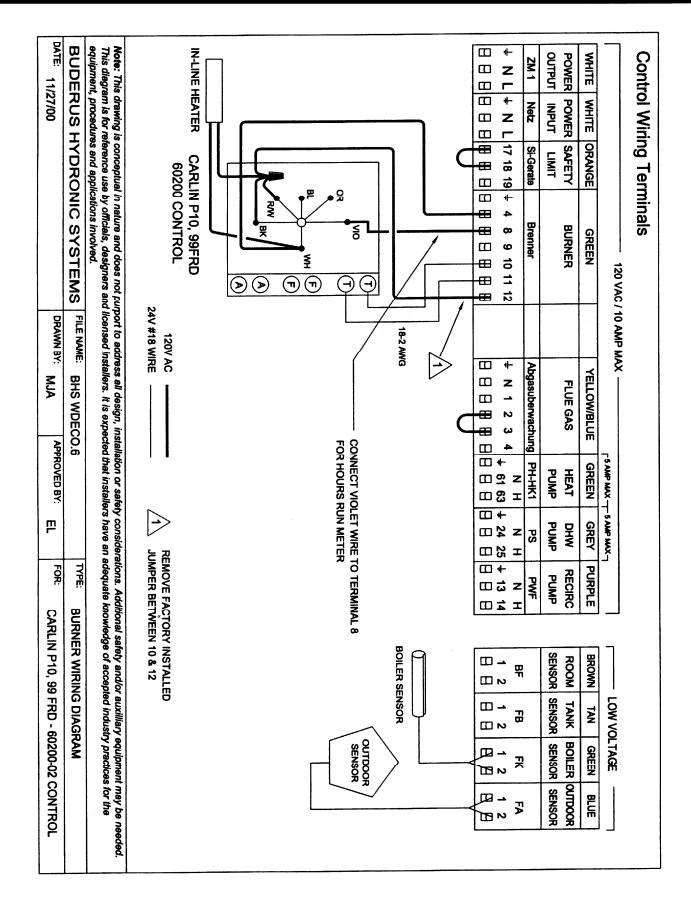


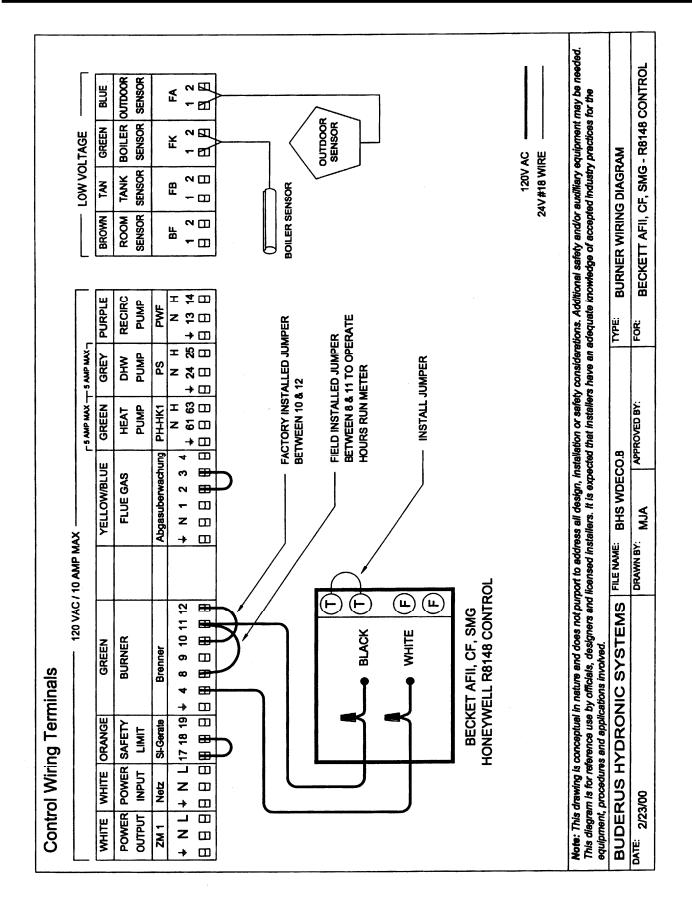




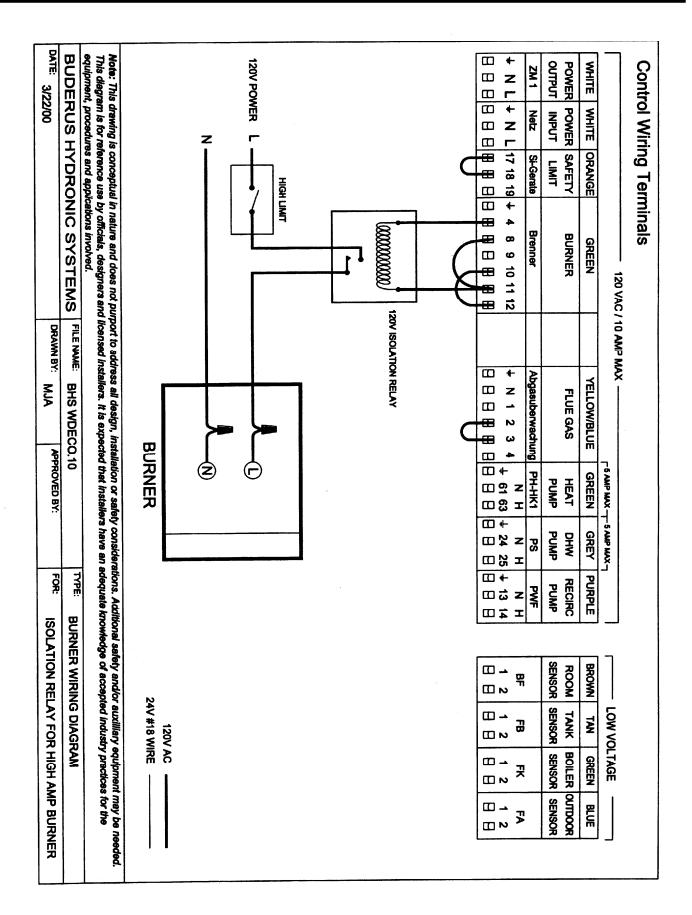
Drawing Number	Description	Page Number
	Gas Boilers	
BHS WDECO.1	G124X, G234X (Honeywell L8148)	65
BHS WDECO.2	G334X	66
	Oil Burners	
BHS WDECO.4	Riello F40 Series - F3, F5, F10	67
BHS WDECO.9	Riello BF Series Direct Vent - BF3, BF5 with K7R control	68
BHS WDECO.5	Carlin EZ 1 with 40200-02 control	69
BHS WDECO.6	Carlin P10 Direct Vent and 99 FRD with 60200-02 control	70
BHS WDECO.8	Beckett AFII, CF, SMG with Honeywell R8148 control	71
BHS WDECO.10	Generic wiring with isolation relay for high amp burner	72
	Two-Stage with FM242 module	
BHS WDECO.11	Line Voltage Switching	73
BHS WDECO.7	Low Voltage Switching with L8148 controls	74
BHS WDECO.3	G334X gas boiler	75

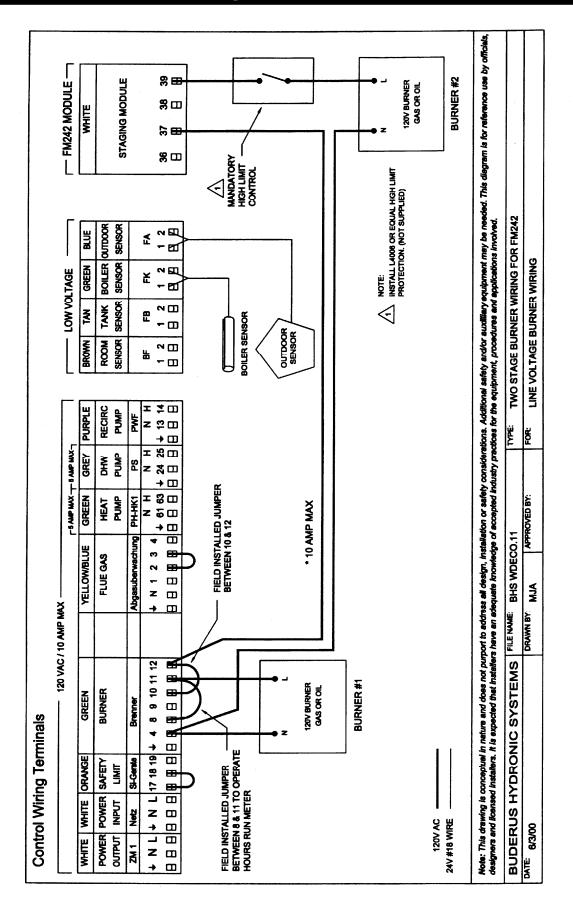


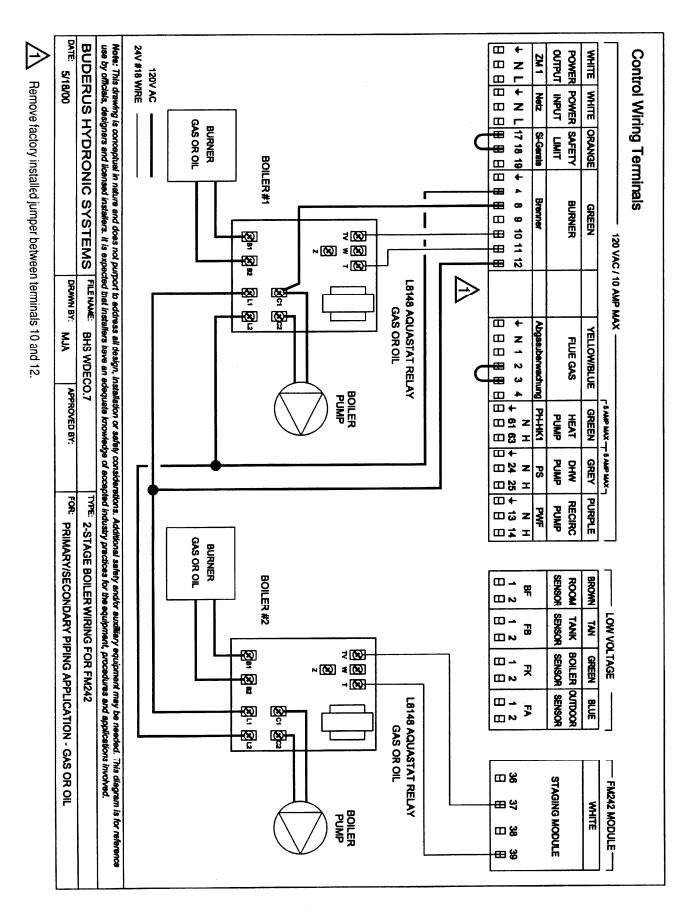


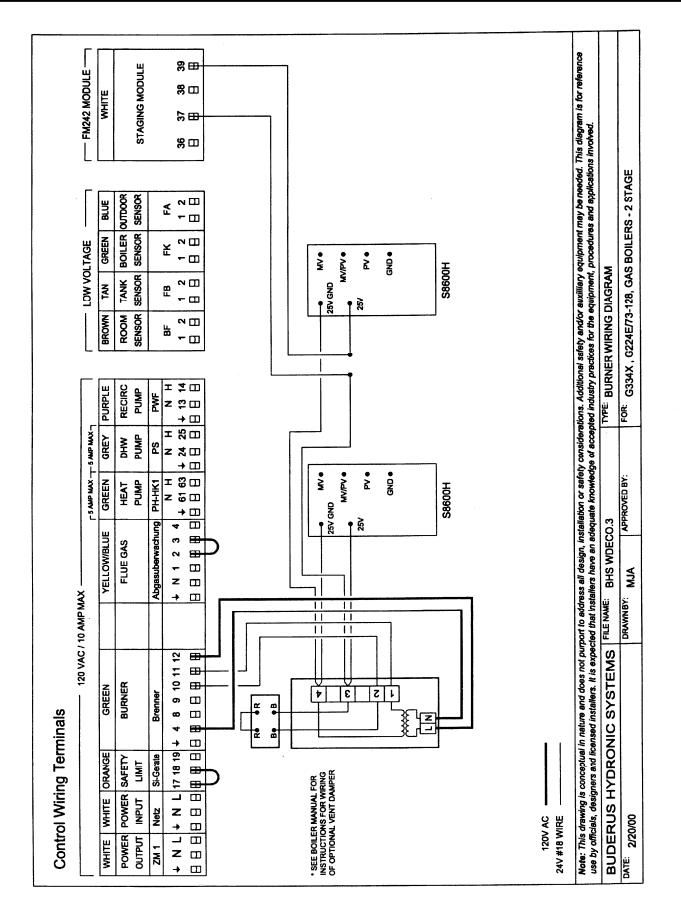


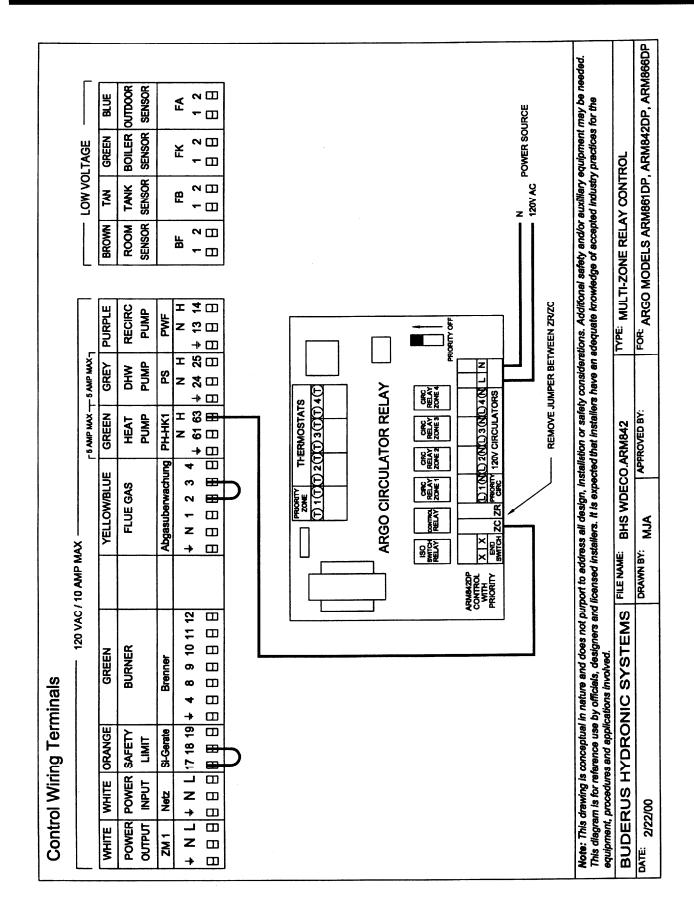
68

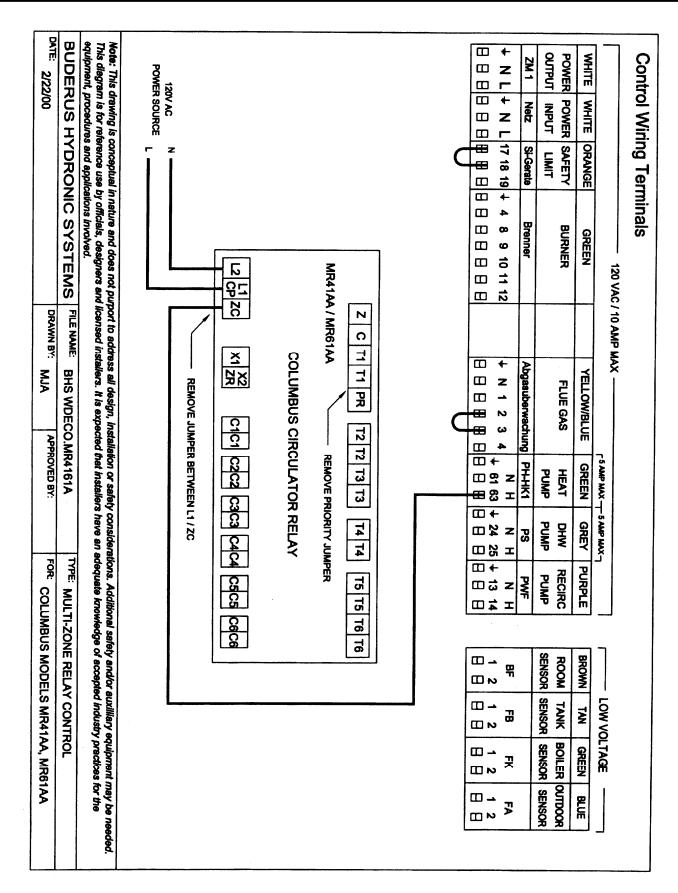


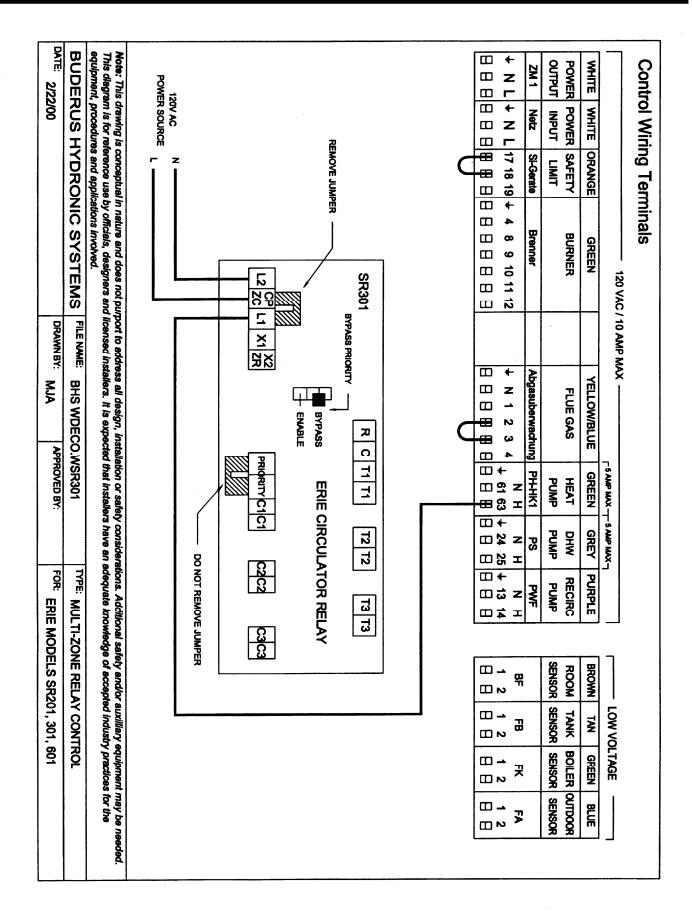


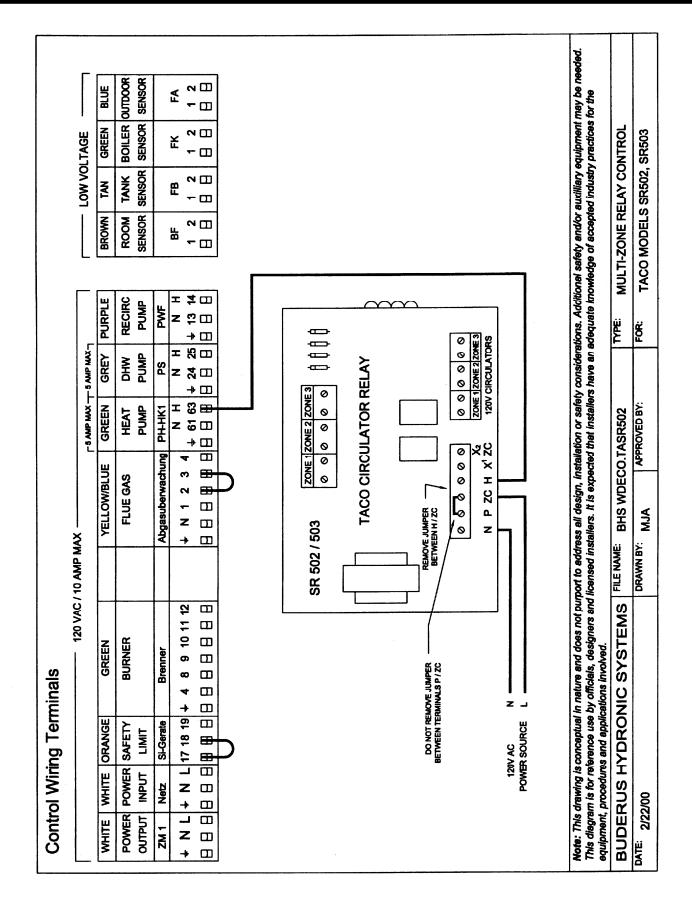

70

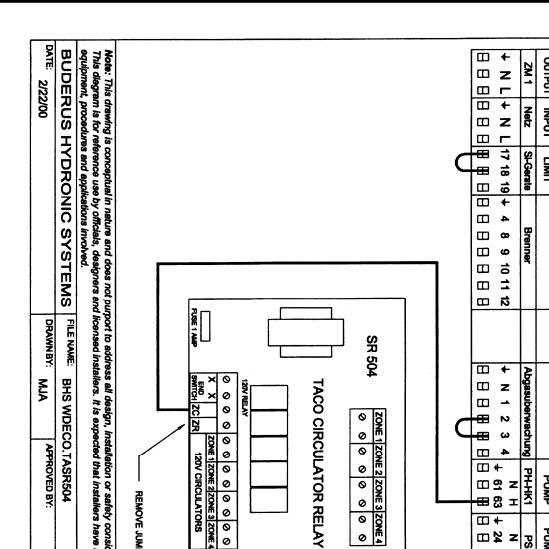


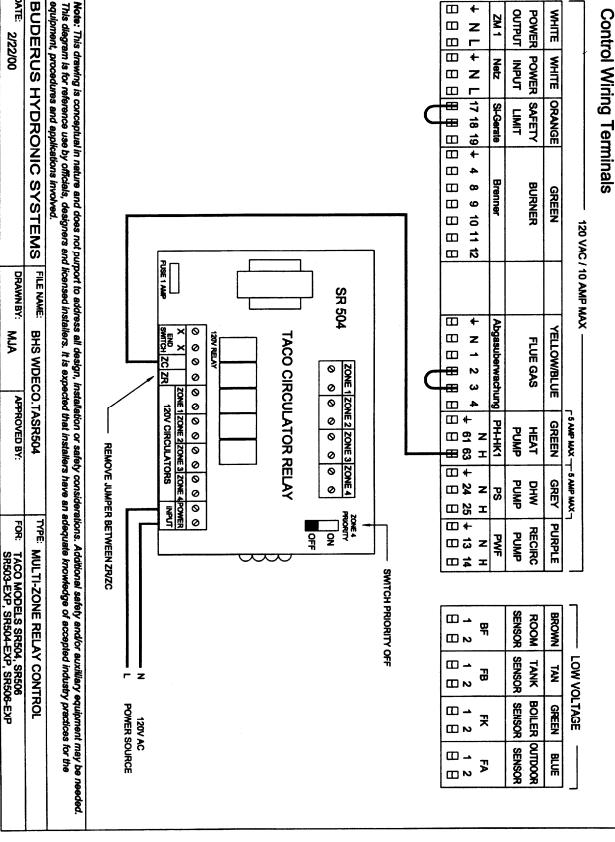


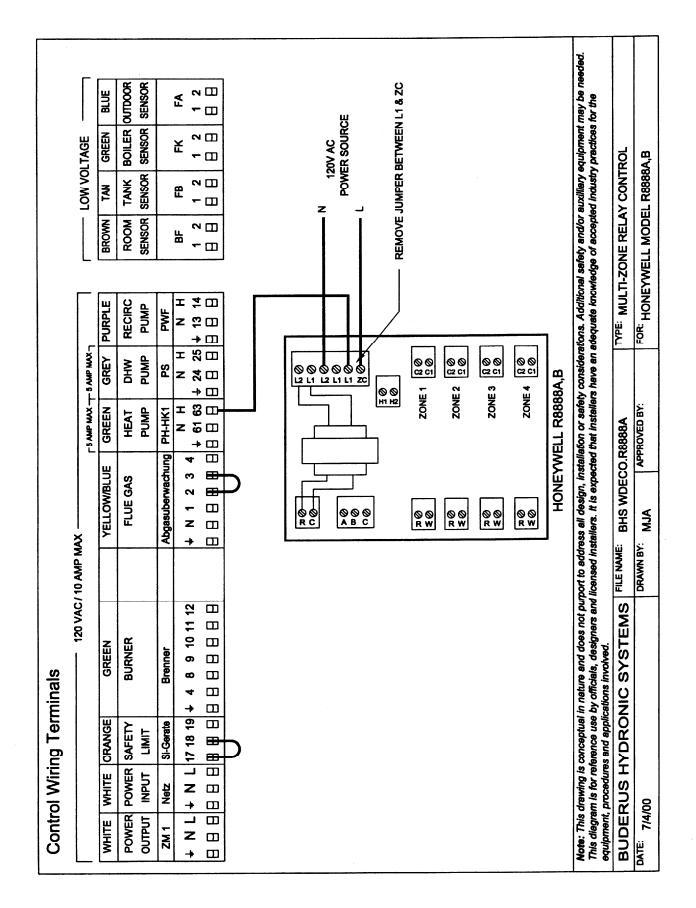


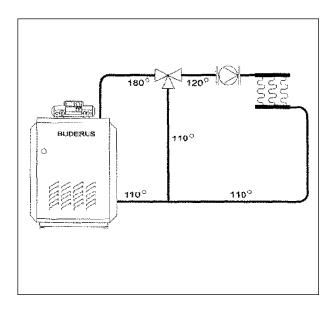



Drawing Number	Description	Page Number
WDECO.ARM842	Argo models ARM861DP, ARM842DP, ARM866DP	77
WDECO.MR4161A	Columbus models MR41AA, MR61AA	78
WDECO.MR31AA	Columbus model MR31AA	79
WDECO.WSR301	Erie models SR201, SR301, SR601	80
WDECO.TASR502	Taco models SR502, SR503	81
WDECO.TASR504	Taco models SR504, SR506, SR503-EXP, SR504-EXP and SR506-EXP	82
WDECO.R8888A	Honeywell models R8888A,B	83

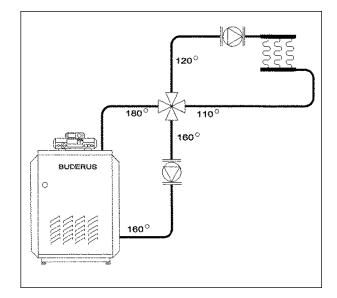


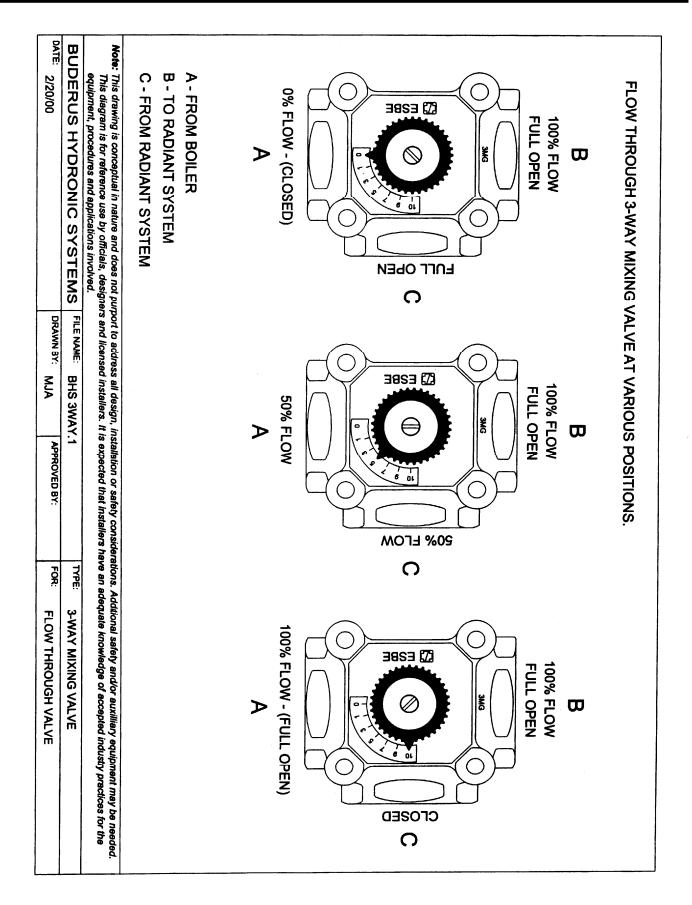


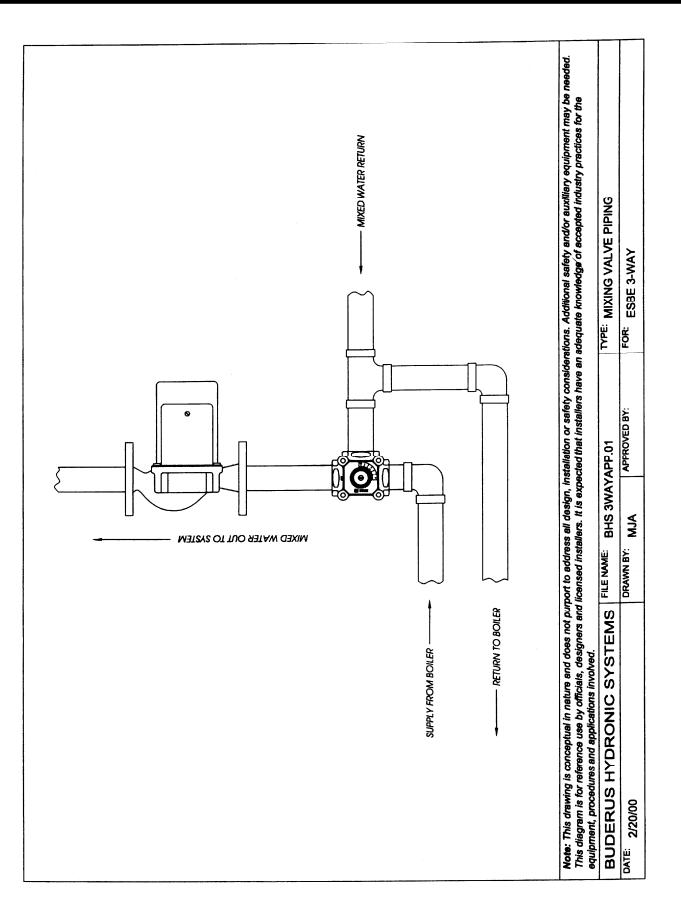

		120 VAC / 1	120 VAC / 10 AMP MAX		L 2 AMP MAX 2 AMP MXX	-5 AMP MXT		L		LOW VOLTAGE	TAGE	ſ
WHITE WHITE	ORANGE	GREEN		YELLOW/BLUE	GREEN	GREY	PURPLE	ä	BROWN	TAN	GREEN	BLUE
POWER POWER	SAFETY	BURNER	FL	FLUE GAS	HEAT	WHO	RECIRC	Ϋ́	ROOM	TANK	BOILER (OUTDOOR
	+	Branner	Abreen	Abraenhanuachina	DH_HK1		DWF	<u>}</u>				
Z +	1 17 18 19	4	N +		I Z	z	z		Ъ	Ĩ	Ϋ́Ε	Ę
						+ 24 25 E E E	+ 00 2 2 1 2 1 2 1 2	- 0				
-			-	þ				J		-		
			R C T1 T1	Ξ	1	T3 T3						
			COLUN	COLUMBUS CIRCULATOR RELAY	SULATOR	RELAY						
						MOVE PRIOF	REMOVE PRIORITY JUMPER					
		L2 CP L1	1 X1 X2		PRIORITY C1C1		c2c2	C3C3				
			REN	REMOVE JUMPER BETWEEN L1 / ZC-CP	BETWEEN L1	/ zc-cP			-			
120V AC POWER SOURCE										-		
Note: This drawing is conceptual in nature and do This diagram is for reference use by officials, des equipment, procedures and applications involved.	s conceptual Merence use es and appli	gners	t purport to address all design, installation or safety considerations. Additional safety and/or auxilitary equipment may be and licensed installers. It is expected that installers have an adequate knowledge of accepted industry practices for the	esign, installa It is expected i	tion or safet that installer	/ consideral s have an a	ions. Additio dequate kno	nal safety . wledge of .	and/or al	uxilliary e i industry	quipment I practices	nay be ne or the
BUDERUS HYDRONIC	HYDRO	SYSTEMS	FILE NAME: BHS	BHS WDECO.MR31AA	R31AA		TYPE: MULT	MULTI-ZONE RELAY CONTROL	RELAY	CONTF	р М	-
DATE: 2/22/DD			DRAWN BY: A4 14		APPROVED BY:		FOR					

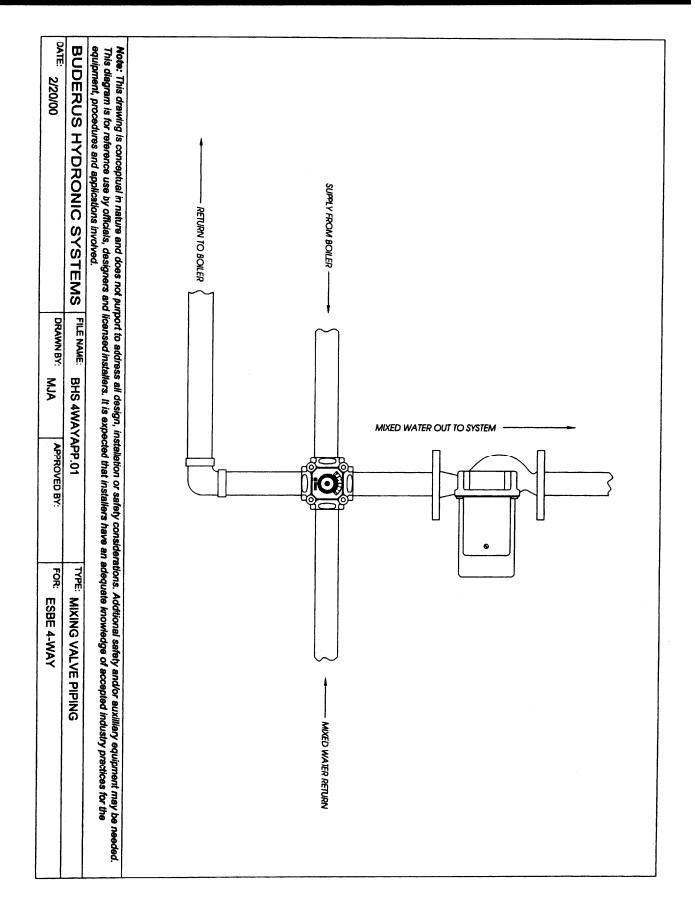


Description	Page Number
Essay on Mixing Valves	85
Flow percentage through 3-way mixing valve	86
Piping for ESBE 3-way mixing	87
Piping for ESBE 4-way mixing	88
Wiring for VM-62 motor	89
Essay on Variable Flow Injection Mixing	90
Design Criteria for Variable Flow Injection Mixing	92
	Essay on Mixing Valves Flow percentage through 3-way mixing valve Piping for ESBE 3-way mixing Piping for ESBE 4-way mixing Wiring for VM-62 motor Essay on Variable Flow Injection Mixing


MIXING VALVES


There are two types of mixing valves commonly used in hydronic heating systems, 3-port and 4-port. Both of these valves are used to mix return water from the system with water from the boiler. A motorized actuator is used to make adjustments to the valve positioning in order to maintain a given outlet temperature. This type of controlling provides very accurate control of water temperature to the system. It also allows the system water temperature to be reset based on changes in outdoor (and optionally indoor) temperature. Without the use of a motorized actuator, the outlet temperature of the valve is dependent on the flow rate and temperature of the incoming water. Using a manually set mixing valve without a motorized actuator can create wide swings in the outlet temperature.


3-port valve - Three port mixing valves allow system water to return directly to the heat source. Buderus generally recommends the use of 3 way mixing valves when using a Buderus boiler. Due to the flexibility and corrosion resistance of the Buderus boiler and the condensate protection feature of the Buderus control system, cooler return water temperature does not present a problem.

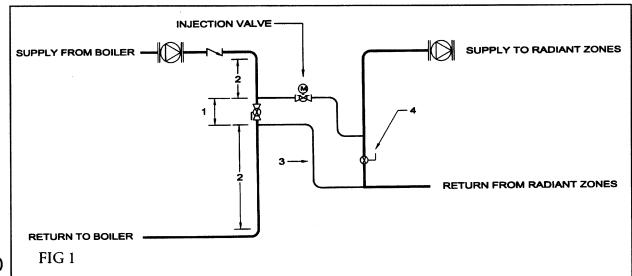


4-port valve - Four port mixing valves allow cooler return temperatures from the system to be mixed with boiler temperature water resulting in higher return temperatures to the boiler. A boiler loop pump must be used in order to ensure this mixing of temperature. Most cast iron boilers require this higher return temperature to guard against thermal shock and flue gas condensation. 4-port valves are recommended in applications were there is a large volume of low temperature system water. This will reduce pump cycling on system start up and prolonged setback periods.

	120 VAC / 10 AMP MAX	WAX				Ē	LOW VOLTAGE	TAGE -	ſ		- FIN24	FM241 MODULE		Г
WHITE WHITE ORANGE	GREEN	YELLOW/BLUE	GREEN	GREY P	PURPLE	BROWN	N1	GREEN	BLUE	BROWN	BROWN LT. BROWN	BROWN	BROWN	Z
POWER POWER SAFETY OUTPUT INPUT LIMIT	BURNER	FLUE GAS	HEAT	PUMP	RECIRC PUMP	ROOM	TANK B	BOILER OUTDOOR SENSOR SENSOR	DUTDOOR	ROOM	SUPPLY	MIXING	HEAT	
ZM 1 Netz S-Gerate	Brenner	Abgasuberwachung	đ		PWF				T		-	SHHKZ	PHHK2	1~
+ N L + N L 17 18 19 +	F 4 8 9 10 11 12	+ N 1 2 3 4	H N -	H N N			, m		F,		، ^ج	0 :	z	I
	88888	88888	3 ED 5 ED • ED			×⊞ - ⊞	× 8 - 8	8	8		8		500 +00 ¥⊞	80
	120 vac				54	24 vac					930) Z	BROWN	BLACK	
NOTES: 1) POWER INPUT (120 (5 AMP MAX)	NOTES: 1) POWER INPUT (120V OR 24V) TO TERMINAL 41 N (5 AMP MAX)	1 MUST BE SUPPLIED (BY OTHERS)	(ву отне	ŝ	<u>e</u>				•			\searrow		
2) THE ESBE YM-82 MOTOR REQU A FIELD INSTALLED 24 VAC TRV (NOT PROVIDED BY BUDERUS)	2) THE ESBE YM-82 MOTOR REQUIRES A 24 VAC INPUT. A FIELD INSTALLED 24 VAC TRANSFORMER WILL BE REQUIRED. (NOT PROVIDED BY BUDERUS).	IPUT. .L BE REQUIRED.							ESBE					
3) AS SHOWN, THE MIXING VAL OPEN. DEPENDING UPON VALV REQUIRE THE MOTOR TO TURY OPEN. THIS IS DONE BY SWITC WIRES AT THE FM241 MODULE.	VE WILL TURN C E POSITIONING, V COUNTER-CLO HING THE BROW	LOCKWISE TO You May Cocwise to N and Black												
: This drawing is conceptu This dragram is for refere This diagram is for refere	Note: This drawing is conceptual in nature and does not purport to address all design, installation or safety considerations. Additional safety and/or auxilitary equipment may be needed. This diagram is for reference use by officials, designers and licensed installers. It is expected that installers have an adequate knowledge of accepted industry practices for the	ourport to addres ners and license	s all design d installers	, installatio , it is expec	n or safe ted that i	ty considents l	arations. Tave en	Addition Bdequat	nal safety la knowleo	and/or ai 1ge of ac	ıxililary e septed in	quipment dustry pre	may be r	eded eda
DERUS HYDRO	BUDERUS HYDRONIC SYSTEMS	S FILE NAME:	BHS VM62.01	62.01			TYPE:		MIXING VALVE MOTOR WIRING	/E MOT	OR WIR	DNI		
00010		DRAWN BY:		APPRO	APPROVED BY:		FOR							

VARIABLE FLOW INJECTION MIXING

The Buderus FM241 module used in conjunction with a 2-way injection valve offers an alternative to either motorized mixing valve operation or variable speed pump injection for fine-tuned control of a radiant floor heating system. This method of mixing provides very accurate control of water temperature to the system. As with motorized mixing valves, this type of controlling also allows the system water temperature to be reset based on changes in outdoor (and optionally indoor) temperature.


Description:

System inputs consist of the outdoor sensor (FA) of the Buderus HS2105 and the strap-on sensor (FV) mounted on the supply side of the radiant floor system. Optionally, a BFU room sensor can be used for indoor temperature feed back for further fine-tuning of the system water temperature. These inputs are processed by the control and compared to the reset curve: as a result the HS2105 control powers the injection valve actuator as needed to provide accurate water temperature control.

Two methods of injection piping are commonly used:

Primary/Secondary injection - this method creates a boiler loop around the boiler allowing cooler return temperatures from the system to be mixed with boiler temperature water resulting in higher return temperatures to the boiler. A boiler loop pump must be used in order to ensure this mixing of temperature. A circulator is installed in the boiler loop to create a constant flow of boiler temperature water around the boiler loop. Two closely spaced tees form the supply and return of the variable flow injection mixing system (see FIG 1). The following piping practices must be considered:

- 1) Maintain a maximum of 4 pipe diameter distance between the tees in the boiler loop.
- 2) Maintain a minimum of 6 pipe diameters of straight pipe on both sides of the tees to prevent momentum induced flow into the injection system.
- 3) Install a thermal trap with a minimum of 18" height on the return side of the injection system piping.
- 4) Install a properly sized balancing valve on the system loop. A globe type valve is recommended for fine regulation and long service life.

VARIABLE FLOW INJECTION MIXING

Direct injection - in this method the variable flow injection mixing system is piped as a separate zone from the main boiler supply manifold, with a check valve installed to prevent reverse flow in the radiant system when the pump is not operating. This method allows direct return of radiant system water to the boiler. A boiler loop pump is not required. (see FIG 2).

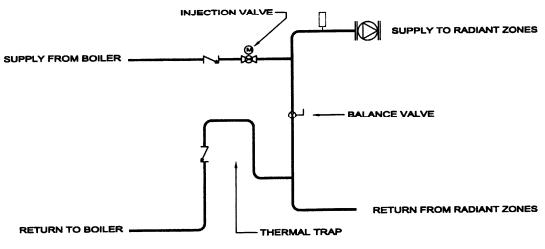
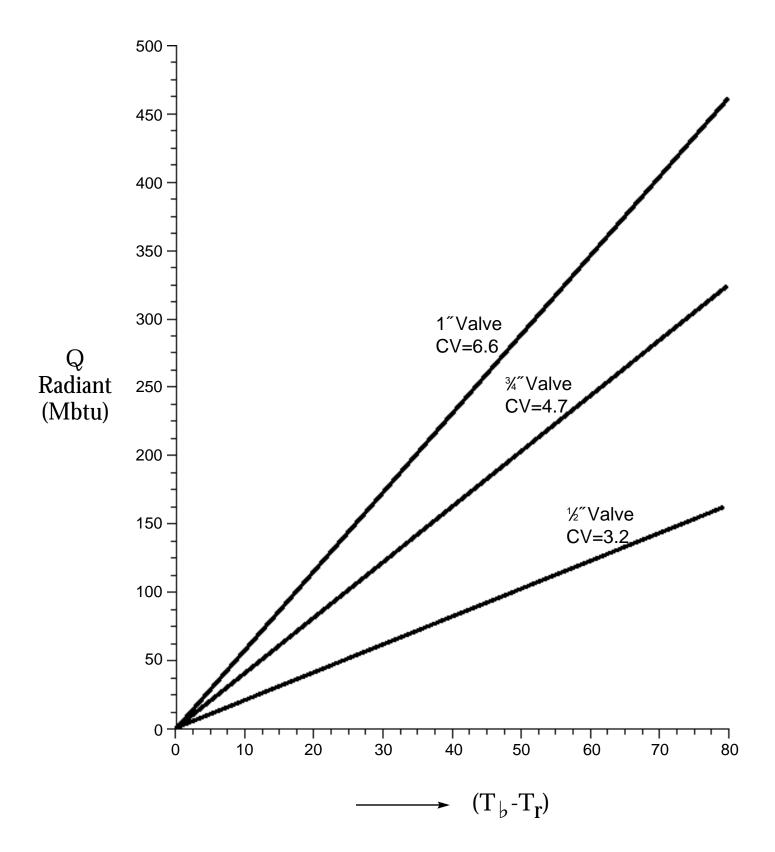


FIG 2


SYSTEM DESIGN CONSIDERATIONS

The following design procedure assumes that the boiler water temperature requirement exceeds the temperature requirements for the radiant system.

1) Determine the following parameters:
Maximum boiler supply temperature:
Tr
Radiant system temperature drop:
Radiant Heat Load:Tb
Fr
Qr2) Determine radiant flow rate:
$$GPM_r = \frac{Q_r}{(500) X \bigtriangleup T_r}$$
3) Determine driving temperature difference $T_b - T_r$ 4) Determine the injection flow ratio $\frac{\bigtriangleup T_r}{T_b - T_r + \bigtriangleup T_r}$ 5) Compute injection flow rateFlow ratio X GPM_r

6) Select the proper size Variable Flow Injection Valve using sizing chart.

7) Compare CV Value with flow rate

7 Tables/Formulas

Flow Rate Calculations				
For Water Temperature Drop				
BTUH	10	20	30	
втоп	10	GPM	- 30	
5,000	1	0.5	0.33	
6,000	1.2	0.6	0.4	
7,000	1.4	0.7	0.47	
8,000	1.6	0.8	0.53	
9,000	1.8	0.9	0.6	
10,000	2	1	0.67	
15,000	3	1.5	1	
20,000	4	2	1.3	
25,000	5	2.5	1.7	
30,000	6	3	2	
35,000	7	3.5	2.3	
40,000	8	4	2.7	
45,000	9	4.5	3	
50,000	10	5	3.3	
55,000	11	5.5	3.7	
60,000	12	6	4	
65,000	13	6.5	4.3	
70,000	14	7	4.7	
75,000	15	7.5	5	
80,000	16	8	5.3	
85,000	17	8.5	5.7	
90,000	18	9	6	
95,000	19	9.5	6.3	
100,000	20	10	6.7	
110,000	22	11	7.3	
120,000	24	12	8	
130,000	26	13	8.7	
140,000	28	14	9.3	
150,000	30	15	10	
160,000	32	16	10.7	
170,000	34	17	11.3	
180,000	36	18	12	
190,000	38	19	12.7	
200,000	40	20	13.3	
210,000	42	21	14	
220,000	44	22	14.7	
230,000	46	23	15.3	
240,000	48	24	16 16 7	
250,000	50	25	16.7	
260,000	52	26 27	17.3	
270,000 280,000	54 56	27 28	18 18.7	
280,000	58	28	19.3	
300,000	58 60	29 30	20	
350,000	70	30 35	20	
400,000	80	35 40	23.3	
450,000	90	40 45	30	
430,000 500,000	100	45 50	33.3	
500,000	100	50	55.5	

		Maximum Recommended Flow Rates For Hydronic Heating						
Copper Tubing	GPM	Steel Pipe	GPM					
1/2	1½	1/2	2					
3/4	4	3⁄4	4					
1	8	1	8					
1¼	14	1 ¼	16					
1½	22	1 ½	25					
2	45	2	50					
2 ½	85	2½	80					
3	130	3	140					

Mixing Val	ve Sizing	J
GPM	ESBE	ESBE
(Radiant System)	3-Way	4-Way
1 to 8	3/4″	3/4″
9 to 14	1″	1″
15 to 22	11/4″	11/4″
23 to 40	11/2″	11/2″
41 to 60	2″	2″
61 to 125	*21/2″	*21/2″
126 to 200	*3″	*3″
*Requires VM83 moto	or and VL800	linkage

	ate Heat Output Ibe Baseboard
Average Water Temp (F)	Btu/Hr Per Lineal Ft @ 1GPM Flow Rate
90	65
100	106
110	156
120	209
130	262
135	290
140	320
150	380
160	450
170	510
180	580

*Add 15% to flow rate for 50/50 Glycol solution

Conversions/Formulas

GPM	=	BTU/hr 500 x Delta T (Degrees F)			
BTU/hr	=	500 x GPM x Delta T (Degrees F)			
Pressure (PSI)	=	Head (Feet) x 1 (Specific Gravity) 2.31			
Head (Feet)	=	Pressure (PSI) x 2.31 1 (Specific Gravity)			
Fahrenheit	=	(Degrees Celsius x 1.8) + 32			
BTU/hr	=	Kilowatts x 3,413			
Recovery time for an indirect water heater		Q Boiler Output (BTU/hr)			
Q(Load) = 8.31 (lbs/gal water) x Delta T x Gallons					
8.31 x 9 39,639	Example: 53 gallon tank + 85,000 Btu/hr boiler 8.31 x 90 (degrees Rise) x 53 (gallons) = 39,639 39,639 / 85,000 (bth/hr) = .466 (hour) 60 (minutes/hr) x .466 = 28 (minutes)				
Temperature drop through a series loop New Supply temperatur	e = Previous Su	apply Temperature - Q (Radiator) 500 x Loop GPM			
		4,000 BTU Starting Supply Temp = 180 degree New supply temperature)			
	Н	eat Values			
I	Natural Gas	1 therm = 100,000 btu			
	#2 Oil	1 gallon = 139,000 btu			
	Propane	1 gallon = 91,800 btu			

Notes

Notes

Notes

Boiler installed by: (contractor's address)	
Boiler installed on: (date of installation)	

HYDRONIC SYSTEMS

Buderus Hydronic Systems 50 Wentworth Avenue Londonderry, NH 03053 USA Tel: (603) 552-1100 • Fax: (603) 421-2719 www.buderus.net

Buderus Hydronic Systems, Inc. reserves the right to make changes without notice due to continuing engineering and technological advances.