

HYDRONIC HEATING EQUIPMENT

HORIZONTAL AND VERTICAL STEAM/HOT WATER UNIT HEATERS

Sterling Hydronic Heating Equipment

Sterling HVAC Products has had broad experience in the manufacture of steam/hot water unit heaters for many years.

Offered in both horizontal and vertical air delivery models, Sterling unit heaters are a complete heat distributing plant, encased in an attractive, streamlined baked enamel housing. Designed for ceiling mounting, they provide a convenient, low cost method of heating warehouses, stores, factories, and other large open areas.

Sterling, responding to the requirements of the heating industry has now expanded its unit heater line to one of the most complete in the industry, twenty-three horizontal and fifteen vertical steam/hot water models!

Most Sterling unit heaters are equipped with totally enclosed motors with internal thermal overload, statically and dynamically balanced fans for quiet operation, and with the installer in mind, we designed a versatile hanging system for easy installation! Sterling horizontal unit heaters are attractively finished in dark gray jackets with dark gray air deflection louvers.

Sterling is proud of the reputation it has earned in the hydronic heating equipment market for product quality, design, innovations and customer service. The corporation has pledged its full range of engineering and manufacturing resources toward maintaining an unwavering commitment to the steam/hot water heating equipment industry.

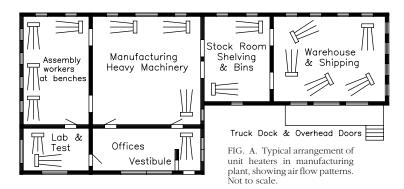
Table of Contents

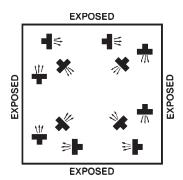
Introduction	2
Table of Contents	3
Application of Unit Heaters	4
Horizontal Unit Heaters	5
Steam Performance Data	6
Steam Calculations and Correction Factors	7
Hot Water Performance Data	8
Hot Water Calculations and Correction Factors	9
Technical Data	10
Mounting Heights and Throws	11
Dimensional Data	12
Standard Specifications	13
Serpentine Coil Dimensional Data	14
Serpentine Specification	15
Motor Characteristics – Horizontal Models	16
Vertical Unit Heaters	17
Steam Performance Data	18-19
Steam Calculations and Correction Factors	20
Hot Water Performance Data	21-22
Hot Water Performance Data	23-24
Hot Water Calculations and Correction Factors	25
Dimensional Data	26
Mounting Heights and Throws	27
Motor Characteristics	28
Piping and Installation – Horizontal & Vertical Models	29
Wiring Diagrams – Horizontal & Vertical Models	30
Warranties and Terms of Sale	30
Model Number Descriptions	31

Application of Unit Heaters

The proper choice and placement of a unit heater with regard to building type (architecturally) and application (area use) are two criteria, the importance of which cannot be overemphasized.

The first step in the design of a job is typically to determine the heat loss before considering CFM, final air temperature and quantity and location of units. ASHRAE and others publish the basic methodology used in calculating the building or area's heat loss.


Two requirements which not only affect the heat loss calculation but every other step of the job as well, are a detailed knowledge of the building's construction and its planned usage. The number of people, types of equipment and daily activities therein should be a strong guiding factor in the overall design.


Sterlings's horizontal steam/hot water unit heaters are available in a range of outputs and airflows allowing almost unlimited flexibility in job design.

The following points offer some basic guidelines and suggestions which will be helpful in designing any job using horizontal steam/hot water unit heaters:

 Always direct airflow to areas of greatest heat loss.

- Adjust throw length with horizontal louvers.
- Use horizontal and vertical louvers for complete directional control of airflow.
- Mount units at the lowest practical and allowable level.
- Select lower CFM models for lower mounting heights and heavily occupied areas.
- The higher a unit must be located, the more CFM is required to get the heat down to the occupied zone.
- More, smaller units will provide better heat distribution than fewer larger ones.
- Watch final air temperatures on units mounted at lower levels or in heavily occupied areas to insure that air is warm enough to avoid drafts being felt.
- On motors with variable speed control use lower CFM rating for design base.
- Watch sound ratings.

A large square area with exposed walls and roof; units are blanketing all exposed surfaces.

A narrow area with four exposed walls either with or without roof exposure.

A small area with exposed walls requiring one unit.

Horizontal Unit Heaters Construction and Features

MOTORS

115 volt, single speed motors are standard. Most models can be supplied with single phase, explosion proof motors. For standard motors in 230 volt or three-phase configuration, and three-phase explosion-proof motors, see page 16 for availability.

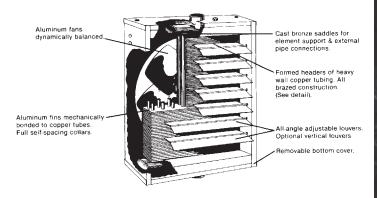
FAN GUARDS

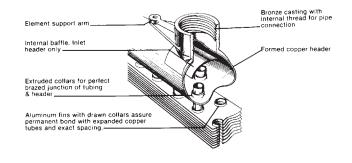
All models with standard (non-explosion-proof) single phase 115 or 230 volt motors utilize a wire fan guard as a motor mount. OSHA type fan guards can be added as an optional accessory. All models with three-phase or explosion-proof motors are shelf-mounted. Standard fan guards can be added as an optional accessory.

HORIZONTAL AND VERTICAL LOUVERS

Horizontal louvers are standard on all models. Vertical louvers are an optional accessory on all models. Vertical louvers are installed on built to order units or shipped loose for field installation.

THERMOSTATS


Three, line voltage wall thermostats are in stock for immediate shipment. All models operate in a 45 to 85°F (7 to 28°C) range. Standard duty models with "off-auto" and "auto-off-fan" and a heavy duty model with "auto-off-fan" switching are available. Other models available on request. Plastic tamperproof one size fits all thermostat guards are also available.


STRAP-ON WATER CONTROL

A SPDT strap-on type hot water control with 100° to 240°F (38 to 116°C) rated at 10 amps at 120V is also available. Control can be used for direct or reverse acting applications as a high or low limit.

STEAM PRESSURE CONTROL

SPST switch opens on a rise in pressure. Control is automatically reset, has a range of 0 to 15 PSIG (0 to 103 KPa) and has an adjustable differential. **Other actions, ranges, circuits and manual reset models are available on request.**

MANUAL STARTERS

Single and three-phase models are available. Standard models are single-speed, toggle-operated, NEMA Type 1 and are surface-mounted.

WALL MOUNTED SPEED CONTROLLERS

Units up to HS108 and VS104 with standard motors (115V) can be operated at reduced speeds by addition of optional speed controller. Controller is 5 amps, pre-set at factory for maximum and minimum speeds, with intermediate speeds infinitely controllable. All 1/3, 1/2 H.P. and 230V motors operate only at rated speed and CFM – See performance data charts.

Horizontal Unit Heaters Steam Performance Data

Performance based on 2# steam pressure at heater with air entering @ 60°F. Max. Working Pressure 150 PSI, 366°F**

Model No.	Output BTU/ HR*	Cond. lbs./hr.	Sq. Ft. E.D.R.	Final Air °F	Motor HP	RPM	Nominal CFM	Outlet FPM	Nom. Amps @ 115VAC†	Nom. Fan Diam. (Inches)
	18,000	18.0	75	102		1550	395	395	.80	9
HS-18	16,200	16.2	68	105	16 Watt	1350	330	330	.80	9
	24,000	24.5	100	109		1550	450	450	.80	10
HS-24	21,600	22.0	90	112	16 Watt	1350	380	380	.80	10
	36,000	37.0	150	119		1550	550	550	1.2	10
HS-36	32,400	33.0	135	120	25 Watt	1350	480	480	1.2	10
	48,000	49.0	200	119		1000	750	550	1.4	12
HS-48	43,200	44.0	180	123	1/20	900	630	460	1.4	12
	60,000	61.0	250	121		1000	900	650	1.4	12
HS-60	54,000	55.0	225	131	1/20	900	700	510	1.4	12
	72,000	73.0	300	120		1000	1100	800	1.4	14
HS-72	64,800	66.0	270	123	1/20	900	950	700	1.4	14
**** 0 /	84,000	85.0	350	115		1000	1400	900	2.2	14
HS-84	75,600	76.0	315	123	1/12	900	1100	750	2.2	14
****	96,000	97.0	400	123	4.410	1000	1400	930	2.2	16
HS-96	86,400	88.0	360	132	1/12	900	1100	800	2.2	16
110 100	108,000	110.0	450	115	1.410	1000	1800	1000	2.2	16
HS-108	97,200	98.0	405	120	1/12	900	1500	900	2.2	16
HC 120	120,000	122.0	500	118	1.72	1140	1900	900	4.5	18
HS-120					1/3					
HS-132	132,000	134.0	550 —	121 —	1/3	1140 —	2000	950 —	4.5 —	18 —
	144,000	146.0	600	120	4.40	1140	2200	1000	4.5	18
HS-144	_	_	_	_	1/3	_	_	_	_	
HS-156	156,000 —	160.0	650 —	115 —	1/3	1140 —	2600	1150 —	4.5	18 —
HS-180	180,000	190.0	770 —	135	1/3	1140	2200	800	4.5 —	18
HS-204	204,000	208.0	850 —	124 —	1/3	1140 —	2900 —	1000	4.5	18
HS-240	240,000	244.0	1000	123	1/3	1140 —	3500 —	900	4.5	20
HS-280	280,000	280.0	1100 —	121	1/2	1100	4200	980 —	5.4	20 —
HS-300	300,000	310.0	1250 —	117 —	1/2	1100	5000 —	700 —	5.4	24
HS-360	360,000	366.0	1500 —	120	1/2	1100	5500 —	1000	5.4	24

^{*} For the lower output, an optional Speed Controller must be ordered.

For Sound Ratings See Pages 8 & 10.

^{**} For further information see page 13, COIL MODELS.

[†]Stated AMP is full load (FLA). AMP draw varies by motor manufacturer ± .2 AMPS. See page 16 for motor data.

Steam Calculations and Correction Factors

		EXAMPLE: – UNIT: HS-24 Steam Pressure 10 PSI Entering Air Temp 40°F
I. CAPACITY A. For 2 lbs. steam, 60° entering air	Read output directly from table on p. 6, 24,000 BTU/HR. (Ref., Std. HS-24).	
B. For higher steam pressures and/or E.A.T.'s above or below 60°F	Multiply output from table on p. 6 by appropriate correction factor from table A (below).	24,000 x 1.29 = 30,960 BTU/HR.
II. FINALAIR TEMPERATURE A. For 2 lbs. steam, 60° entering air	Read temperature directly from table on p. 6, 109°F. (Ref., Std. HS-24).	
B. For capacities calculated in I.B. (above)	$\frac{\text{Output from I.B.}}{1.085 \text{ x CFM from Table p. 6}} + \text{E.A.T.} = \text{Final Air Temp.}$	$\frac{30,960}{1.085 \times 450} + 40 = 103.4^{\circ} \text{F}.$
III. FINALAIR VOLUME A. For 2 lbs. steam, 60° entering air	$\frac{460 + \text{Final Air Temp from table on p. 6}}{530} \times \begin{array}{c} \text{Nom. CFM} & \text{Final} \\ \text{from} & = \text{Air} \\ \text{Table on p. 6} & \text{Volume} \end{array}$	460+109 530 x 450 =483 CFM
B. For final air temperatures calculated In II. B. (above)	Nom. CFM Final 460 + Final Air Temp from II.B. 530 Nom. CFM Final from = Air Table on p. 6 Volume	$\frac{460+103.4}{530} \times 450 = 478 \text{ CFM}$
IV. CONDENSATE PER HOUR A. For 2 lbs. steam, 60° entering air	Read lbs. per hour from table on p. 6, 24.5 LBS./HR. (Ref., Std. HS-24).	
B. For capacities calculated in I.B. (above)	Output from I.B. Latent Heat From Table B = lbs. per hour of condensate	$\frac{30,960}{953}$ = 32.5 LBS./HR.

TABLE A — STEAM CORRECTION FACTORS BASED ON 2 LBS. STEAM 60° E.A.T.

ENTERING AI	IR			STE.	AM PRESS	SURE —	LBS. PER	SQ. IN.	(SATURA)	TED)			
TEMPERATUR	RE 0	2	5	10	15	20	30	40	50	75	100	125	150
30°	1.19	1.24	1.29	1.38	1.44	1.50	1.60	1.68	1.70	1.90	2.02	2.11	2.20
40°	1.11	1.16	1.21	1.29	1.34	1.42	1.51	1.60	1.60	1.81	1.93	2.02	2.11
50°	1.03	1.08	1.13	1.21	1.28	1.33	1.43	1.51	1.58	1.72	1.84	1.93	2.02
60°	0.96	1.00	1.05	1.13	1.19	1.25	1.35	1.43	1.50	1.64	1.75	1.84	1.93
70°	0.88	0.93	0.97	1.06	1.12	1.17	1.27	1.35	1.42	1.55	1.66	1.76	1.84
80°	0.81	0.85	0.90	0.98	1.04	1.10	1.19	1.27	1.34	1.47	1.58	1.68	1.76
90°	0.74	0.78	0.83	0.91	0.97	1.02	1.12	1.19	1.26	1.39	1.50	1.59	1.67
100°	0.67	0.71	0.76	0.84	0.89	0.95	1.04	1.12	1.19	1.32	1.42	1.51	1.59

TABLE B — PROPERTIES OF SATURATED STEAM

			STE	EAM PRES	SURE IN	LBS. PEF	R SQUARE	E INCH C	SAUGE				
	0	2	5	10	15	20	30	40	50	75	100	125	150
Steam													
Temperature-°F	212.0	218.5	227.1	239.4	249.8	258.8	274.0	286.7	297.7	319.9	337.9	352.9	365.9
Latent Heat													
of Steam	970	966	961	953	946	940	929	920	912	891	881	868	857

Horizontal Unit Heaters Hot Water Performance Data

Performance based on 200° EWT, 60° E.A.T., 20° TD.

Model No.	Output BTU/ HR*	GPM	Final Air °F	Prssr. Drop FT./H ₂ O	Motor HP	RPM	Nominal CFM	Outlet FPM	Nom. Amps @ 115VAC†	Sound Rating
	8,030		91			1550	245	250	.80	II
HS-108A	6,800	.80	90	.80	16 Watt	1350	210	215	.80	I
	18,400		94			1550	500	500	.80	II
HS-118A	15,650	1.9	96	2.2	16 Watt	1350	420	420	.80	I
	24,800		102		25 777	1550	580	590	1.2	II
HS-125A	21,230	2.5	106	2.2	25 Watt	1350	460	450	1.2	I
TTO 12()	35,900	2.6	99	2.0	1 /20	1000	850	550	1.4	II
HS-136A	32,300	3.6	100	3.0	1/20	900	750	480	1.4	I
IIC 10	13,050	1.2	95	005	1 (W/ 244	1550	395	395	.80	II
HS-18	11,725	1.3	99	.005	16 Watt	1350	350	350	.80	I
110.24	17,400	1.0	96	01/	1 (W/ 244	1550	450	450	.80	II
HS-24	15,600	1.8	98	.014	16 Watt	1350	380	380	.80	I
110.26	26,100	2.7	103	00	25 Wlatt	1550	550	550	1.2	II
HS-36	23,500	2.7	103	.09	25 Watt	1350	480	480	1.2	I
110 40	34,800	2.5	103	12	1 /20	1000	750	550	1.4	II
HS-48	31,300	3.5	111	.12	1/20	900	630	460	1.4	I
116 (0	43,600	4 4	105	17	1 /20	1000	900	650	1.4	II
HS-60	39,200	4.4	112	.17	1/20	900	700	510	1.4	I
110 70	52,300	5 2	104	22	1/20	1000	1100	800	1.4	II
HS-72	47,000	5.3	106	.23	1/20	900	950	700	1.4	I
110 0 4	61,000	6.1	100	24	1/12	1000	1400	900	2.2	III
HS-84	54,900	0.1	106	.24	1/12	900	1100	750	2.2	II
HS-96	69,700	7.0	106	.29	1/12	1000	1400	930	2.2	III
H3-90	62,700	7.0	113	.49	1/12	900	1100	800	2.2	II
HS-108	78,400	7.9	100	.36	1/12	1000	1800	1000	2.2	III
113-106	70,500	7.9	103	.50	1/12	900	1500	900	2.2	II
HS-120	87,100 —	8.8	102	.39	1/3	1140 —	1900 —	900 —	4.5	III —
HS-132	95,800 —	9.6	104	.41	1/3	1140 —	2000	950 —	4.5 —	IV —
HS-144	104,000	10.4	104	.43	1/3	1140	2200	1000	4.5	IV
HS-156	113,000	11.3	100	.53	1/3	1140	2600	1150	4.5	IV
HS-180	118,000	11.8	110	.60	1/3	1140	2200	800	4.5	III
HS-204	148,100	14.9	107	.79	1/3	1140	2900	1000	4.5	IV
	174,000		106			1140	3500	900	4.5	IV
HS-240		17.4		1.06	1/3					
HS-280	209,100	21.0	106	1.33	1/2	1100	4200	980 —	5.4 —	IV —
HS-300	230,000	23.0	102	2.1	1/2	1100	5000 —	700 —	5.4 —	IV —
HS-360	261,300	26.2	103	2.1	1/2	1100	5500 —	1000	5.4	IV —

 $^{^{\}ast}$ For the lower output, an optional Speed Controller must be ordered.

For Fan Diameter See Page 6.

[†]Stated AMP is full load (FLA). AMP draw varies by motor manufacturer ± .2 AMPS. See page 16 for motor data.

Hot Water Calculations and Correction Factors

		EXAMPLE: – HS-24 UNIT: HS-24 Entering Water Temp. 160°F Entering Air Temp. 40°F Water Temperature Drop 10°F
I. CAPACITY @ 20° TD: A. For 200° EWT, 60° EAT	Read output directly from table on p. 8, 17,400 BTU/HR (Ref., Std. HS-24).	
B. For EWT and/or EAT above or below Standard	Multiply output from table on p. 8 by factor from table A (below).	17,400 x .878 = 15,277 BTU/HR.
II. CAPACITY AT OTHER TD's A. For TD's from 5 to 60°F	Multiply output obtained in IA. or IB. (above) by appropriate factor from Table B (below)	IA - 17,400 x 1.15 = 20,010 BTU/HR. - OR - IB - 15,277 x 1.15 = 17,569 BTU/HR.
III. GPMAT OTHER TD's A. For TD's from 5 to 60°F	Multiply GPM of unit for 20° TD, from table on p. 8 by appropriate factor from table B (below).	$1.8 \times 2.30 = 4.14 \text{ GPM (Applies only to units with } \\ \text{Std. 200° EWT, 60° EAT.) For all others calculate } \\ \text{using formula-GPM} = \frac{\text{BTU}}{500 \times \text{TD}}$
IV. CAPACITY AT OTHER RATES OF WATER FLOW	Multiply output from table on p. 8 by factor from Table D (below).	
V. PRESSURE LOSS AT OTHER TD's A. For TD's from 5 to 60°F	Multiply P.D. of unit for 20° TD, from table on p. 8 by appropriate factor from table B (below).	.014 x 5.00 = .07 Ft. H ₂ O

TABLE A — HOT WATER CONVERSION FACTORS BASED ON 200° ENTERING WATER 60° ENTERING AIR 20° TEMPERATURE DROP

ENTERING AIR		ENTERING WATER TEMPERATURE — 20° WATER TEMPERATURE DROP									
TEMPERATURE	100°	120°	140°	160°	180°	200°	220°	240°	260°	280°	300°
30°	0.518	0.666	0.814	0.963	1.120	1.268	1.408	1.555	1.702	1.850	1.997
40°	0.439	0.585	0.731	0.878	1.025	1.172	1.317	1.464	1.609	1.755	1.908
50°	0.361	0.506	0.651	0.796	0.941	1.085	1.231	1.375	1.518	1.663	1.824
60°	0.286	0.429	0.571	0.715	0.857	1.000	1.143	1.286	1.429	1.571	1.717
70°	0.212	0.353	0.494	0.636	0.777	0.918	1.060	1.201	1.342	1.483	1.630
80°	0.140	0.279	0.419	0.558	0.698	0.837	0.977	1.117	1.257	1.397	1.545
90°	0.069	0.207	0.345	0.483	0.621	0.759	0.897	1.035	1.173	1.311	1.462
100°	0	0.137	0.273	0.409	0.546	0.682	0.818	0.955	1.094	1.230	1.371

TABLE B — HOT WATER BTU, GPM AND PRESSURE LOSS FACTORS BASED ON STANDARD CONDITIONS OF 200°F ENTERING WATER 60° F ENTERING AIR & 20° F WATER DROP

USE FACTORS FROM THIS TABLE TO OBTAIN				TEMPERA	TURE D	ROP °F			
APPROXIMATE RESULTS	5	10	15	20	25	30	40	50	60
To obtain BTU for other Water Temperature Drops, multiply basic BTU rating by applicable Factor.	1.25	1.15	1.08	1.00	.94	.90	.83	.76	.72
To obtain GPM for other Water Temperature Drops, multiply basic GPM rating by applicable Factor.*	5.00	2.30	1.44	1.00	.74	.59	.40	.30	.24
To obtain Pressure Loss Feet of Water for other temperature Drops, multiply Basic loss at 20° drop by Factor.	10.00	5.00	2.00	1.00	.60	.40	.20	.13	.07

*TABLE C — MINIMUM WATER FLOW — GPM

MODEL No.	HS108A	HS118A	HS125A	HS136A	HS18	HS24	HS36	HS48	HS60	HS72	HS84	HS96
MIN. GPM	.125	.125	.125	.125	.75	1.24	1.24	1.49	1.49	1.62	1.86	3.35
MODEL No.	HS108	HS120	HS132	HS144	HS156	HS180	HS204	HS240	HS280	HS300	HS360	
MIN. GPM	3.35	3.60	4.09	4.09	4.09	4.34	4.34	4.59	4.59	6.08	6.08	

*TABLE D — HEATING CAPACITY FACTORS FOR VARIOUS RATES OF WATER FLOW

% of Rated Water Flow	25%	50%	75%	100%	125%	150%	175%
Btu/Hr Heating Capacity	.80	.89	.96	1.00	1.04	1.07	1.10

Horizontal Unit Heaters Technical Data

The performance data listed on page 8 includes sound ratings. The ratings provide a guide in determining the acceptable degree of loudness in particular occupancy situations.

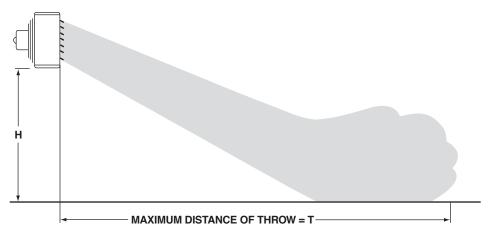
Certain general rules apply to specific selection of unit heaters with regard to degree of quietness (or loudness);

- The greater the fan diameter, the higher the sound level.
- The higher the motor RPM, the higher the sound level. Note that on most units the lower the speed mode results in lowering the sound rating one increment.
- Selecting a larger number of smaller units generally results in lower overall noise levels than fewer large units.

All horizontal steam and hot water unit heater motors, whether fan guard or shelf-mounted, are isolated from the mechanical mount by resilient isolators. This mounting along with balanced fan blades and excellent overall construction integrity, assures you the utmost in quiet operation.

The following table outlines sound ratings for various applications. The lower the number, the quieter the unit and the lower the sound requirement.

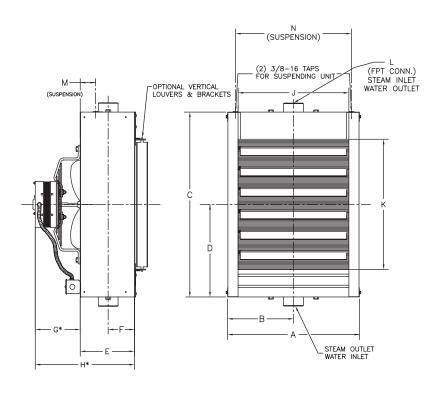
CATEGORY OF AREA	SOUND RATING
Apartment, assembly hall, classrooms churches, courtrooms, executive offices, hospitals, libraries, museums, theatres.	I
Dining rooms, general offices, recreation areas, small retail stores.	II
Restaurants, banks, cafeterias, department stores, public buildings, service stations.	III
Gymnasiums, health clubs, laundromats, supermarkets.	IV
Garages, small machine shops, light manufacturing.	V
Factories, foundries, steel mills.	III - VII*


^{*}Depending on specific use in these facilities, size of operation, etc.

CORRECTIONS WHEN USING GLYCOL SOLUTION IN SYSTEM

		Propylene Glycol		Propylene Glycol
1. Heat transfer @180°F	20% solution	.97*	7. Freezing Point 55% by volume	-
with no increase in			50%	-28°F
flow rate	50% solution	.90*	40%	-13°F
			30%	+ 4°F
2. G.P.M. Req'd. @180°F			20%	+17°F
(no correction to pun	np curve)	1.10%*		
			*Compared to water.	
3. Pump Head Req'd. @18	0°F w/increase			
in G.P.M.		1.23%*	Approximate factors at varying	g altitudes
4. Specify gravity (water	r = 1.0	1.045-1.055*	Altitude	Factor
1. Specify gravity (water	1.0)	1.01) 1.0))	Sea level - 1000 ft.	1.00
5. Pounds/Gallons @60°	F	8.77	1000 ft 3000 ft.	.958
(water = 8.3453 Poun		0.77	3000 ft 5000 ft.	.929
(,, a.e. 0.919910411	a, Ganon,		5000 ft 7000 ft.	.900
6. pH @ 50% by volume		9.5	7000 ft 10000 ft.	.871
5. p11 5 5570 by volume		7.2		

Mounting Heights and Throws


The following table is based on 60° entering air and either 2 lb. steam or 200° water with a 20° T.D. The data is based on the higher speed CFM throughout and velocity. Care should be exercised in locating adjacent unit heaters and allowance should be made for obstructions in the air pattern and conflicting air currents from other air moving devices.

MODEL NO.	MAXIMUM MOUNTING HT.	APPROX. MAX. THROW	MODEL NO.	MAXIMUM MOUNTING HT.	APPROX. MAX. THROW
HS-108A	8	20	HS-108	11	40
HS-118A	8	25	HS-120	12	40
HS-125A	9	29	HS-132	13	54
HS-136A	9	29	HS-144	13	55
HS-18	8	20	HS-156	13	55
HS-24	8	24	HS-180	13	53
HS-36	9	28	HS-204	13	55
HS-48	9	30	HS-240	14	57
HS-60	10	30	HS-280	14	57
HS-72	10	29	HS-300	15	58
HS-84	10	30	HS-360	15	60
HS-96	11	38			

Horizontal Unit Heaters Dimensional Data

D6333B

MODELS HS-18 THRU 360 (HEADER TYPE)

MODEL	A	В	С	D	Е	F	G*	H*	J	K	L	M	N	NO. OF LOUVERS	NOM. FAN DIAM.	APPROX. SHIP WT.
HS-18	$14^{5}/8$	75/16	15	$7^{1}/_{2}$	61/8	215/16	31/4	93/8	121/4	91/2	$1^{1}/_{4}$	$2^{1}/_{4}$	12 ⁷ /8	4	9	26
HS-24	$14^{5}/8$	7 ⁵ /16	18	9	61/8	215/16	31/4	93/8	121/4	121/-	117	217	12 ⁷ /8	5	10	20
HS-36	14-78	/ 16	10	9	0.78	2 716	3.74	9-78	12-/4	$12^{1}/_{2}$	1-/4	2-/4	127/8)	10	30
HS-48	1717	097	2017	1017	57 /	2157	<i>5</i> 1/	1015/	$14^{3}/_{4}$	1.5	117.	137.	1537	6	12	41
HS-60	17 ¹ /8	89/16	$20^{1}/_{2}$	$10^{1}/4$	5 ⁷ /8	$2^{15}/_{16}$	51/16	1015/16	145/4	15	1-/4	1 74	15 ³ /8	8	12	41
HS-72	$18^{3}/8$	93/16	213/4	10 ⁷ /8	6	215/16	51/16	111/16	16	161/4	$1^{1}/_{4}$	$1^{3}/_{4}$	16 ⁵ /8	7	14	44
HS-84	207/8	109/16	241/4	12 ¹ /8	61/8	215/16	511/16	1113/16	181/2	183/4	$1^{1}/_{4}$	$1^{3}/_{4}$	19 ¹ /8	7	14	47
HS-96	1057	0137	24	12	651	23/	717	12137	1717	1717	117	137.	177/	8	16	40
HS-108	195/8	9 ¹³ / ₁₆	24	12	65/16	3 ³ /16	$7^{1}/_{2}$	1313/16	171/4	$17^{1}/_{2}$	1-/2	1 74	17 ⁷ /8	0	10	49
HS-120	20 ⁷ /s	107/16	25 ¹ / ₄	12 ⁵ /8	65/16	3 ³ /16	611/16	13	181/2	183/4	$1^{1}/_{2}$	$1^{3}/_{4}$	19 ¹ /8	8	18	59
HS-132	2237	11117	2737	127/	(51)	237 .	7 57	1.4	21	211/	11/	137.	215/	0	10	7.4
HS-144	$23^{3}/8$	1111/16	$27^{3}/_{4}$	$13^{7}/8$	65/16	$3^3/16$	$7^{5}/8$	14	21	211/4	1'/2	17/4	215/8	9	18	74
HS-156	23 ³ /8	1111/16	273/4	13 ⁷ /8	65/16	3 ³ /16	77/16	133/4	21	211/4	$1^{1}/_{2}$	$1^{3}/_{4}$	21 ⁵ /8	9	18	74
HS-180	2/5/	125/	20	1 /1 /	(3)	237	77/	1237	2217	2217	117	137.	227/	0	10	00
HS-204	$24^{5}/8$	125/16	29	$14^{1/2}$	63/8	$3^3/16$	77/16	$13^{3}/_{4}$	221/4	$22^{1}/_{2}$	1'/2	17/4	227/8	9	18	90
HS-240	27 ⁷ /8	1315/16	301/4	15 ¹ /8	81/8	33/16	5 ⁷ /8	14	251/2	233/4	2	$1^{3}/_{4}$	261/8	10	20	125
HS-280	27 ⁷ /8	1315/16	301/4	15 ¹ /8	81/8	33/16	95/8	173/4	251/2	233/4	2	$1^{3}/_{4}$	261/8	10	20	118
HS-300	223/	16117	2737	1.077	0	237	057	1.057	2.1	211/		13/	215/	12	24	154
HS-360	$33^{3}/8$	1611/16	$37^{3}/4$	$18^{7}/8$	9	$3^3/16$	95/8	18 ⁵ /8	31	311/4	2	13/4	315/8	13	24	154

^{*} APPLIES TO STANDARD MOTOR WITH STANDARD FAN GUARD. WHEN OPTIONAL MOTORS OR OSHA FAN GUARDS ARE REQUESTED, DIMENSIONS WILL CHANGE ACCORDING TO THE SUBSTITUTIONS MADE.

NOTES: 1. Standard motor and standard guard shown.

^{2.} Optional OSHA guards available for all units with 1 phase motors. 3. All 3 phase and explosion proof motors are shelf mounted.

Horizontal Specifications

GENERAL

Furnish and install, where indicated or scheduled on plans Sterling Model HS horizontal steam/hot water unit heaters. Unit shall be equipped as specified herein. All units shall be installed in a neat and workmanlike manner in accordance with this specification and the manufacturer's installation instruction.

CASING

Casings shall be 20 gauge die-formed steel. Casing substrates shall be prepared for finishing with a hot wash, iron phosphatizing clear rinse, chromic acid rinse and oven drying. Paint finish shall be of lead-free, chromate free, alkyd melamine resin base and applied with an electrostatic two-pass system. Finish shall be baked at 350°F.

COIL MODELS 18 – 360

Coil elements and headers shall be of heavy wall drawn seamless copper tubing. Element tubes shall be brazed into extruded header junctions. Pipe connection saddles shall be of cast bronze. Aluminum fins shall have drawn collars to assure permanent bond with expanded element tubes and exact spacing. All Element Assemblies are submersion tested at factory at 250 P.S.I., and are rated at 150 pounds of saturated steam pressure at 366°F, under maximum load conditions. We recommend operating pressure of 75 P.S.I. at 320°F for long life.

MOTORS

Motors shall be totally enclosed, resilient mounted with class "B" windings. All motors shall be designed for horizontal mounting. Motors under 1/3 H.P. are totally enclosed, frame mounted, 115/1/60 with thermal overload protection and permanently lubricated sleeve bearings with optional solid state speed controller available. 1/3 H.P. (115/1/60) motors are open frame construction, with thermal overload protection and ball bearings. 1/3 H.P. at (230V) and 1/2 H.P. (230V) motors are open frame construction, with thermal overload protection and ball bearings. 1/3 and 1/2 H.P. motors are available in single and 3 phase in open frame construction or explosion-proof housings, all the above are available as options.

EXPLOSION PROOF MOTORS

An enclosed motor whose enclosure is designed and constructed to withstand an explosion of a specific gas or vapor which may occur within the motor and to prevent the ignition of this gas or vapor surrounding the machine.

Sterling motors comply with the National Electrical Code classification as follows:

Class I, Group D; all sizes

Class II, Group F; all sizes

Class II, Group G; all sizes

Division I & II Installations

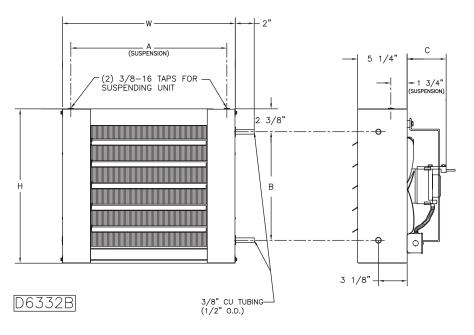
T-code (T3B)

Explosion proof equipment is not generally available for Class I, Groups A and B and it is necessary to isolate motors from the hazardous area. All explosion proof motors are shelf mounted.

FANS

Fans shall be of the aluminum blade, hub type designed and balanced to assure maximum air delivery, low motor horsepower requirements and quiet operation. Blades are spark proof.

FAN GUARDS


Fan guards shall be welded steel, zinc plated or painted. To meet CSA and OSHA requirements, units mounted below 8 feet from floor must be equipped with an OSHA fan guard. OSHA fan guards are optional.

AIR DEFLECTION LOUVERS

Units shall be equipped with horizontal, individually adjustable louvers. Vertical louvers for four-way air control shall be available as an optional extra.

Horizontal Serpentine Coil Unit Heaters Dimensional Data

NOTE: Motors are totally enclosed, thermally protected, sleeve bearing, with $2"(h) \times 4"(w)$ conduit connection boxes. Nutserts are attached to enclosure for balanced hanging.

STANDARD SPECIFICATION

MODEL NO.	Н	W	A	В	С	NO. LOUVERS	NOM. FAN DIAM.	APPROX. SHIP WT.
HS-108A	16	18	$16^{7}/_{32}$	$11^{1}/_{4}$	$4^{1}/_{4}$	5	9	22
HS-118A	16	18	$16^{7}/_{32}$	$11^{1}/_{4}$	$4^{1}/_{4}$	5	10	24
HS-125A	16	18	$16^{7}/_{32}$	$11^{1}/_{4}$	$4^{1}/_{4}$	5	10	25
HS-136A*	$18^{1}/_{2}$	$20^{1}/_{2}$	$18^{23}/_{32}$	$13^{3}/_{4}$	51/8	6	12	31

^{*} DIMENSION "C" IS TO BACK OF MOTOR, NOT MOTOR CONDUIT CONNECTOR AS SHOWN ABOVE.

Serpentine Coil Specifications

GENERAL

Furnish and install, where indicated or scheduled on plans Sterling Model HS-A horizontal hot water unit heaters. Unit shall be equipped as specified herein. All units shall be installed in a neat and workmanlike manner in accordance with this specification and the manufacturer's installation instruction.

CASING

Casings shall be 20 gauge die-formed steel. Casing substrates shall be prepared for finishing with a hot wash, iron phosphatizing clear rinse, chromic acid rinse and oven drying. Paint finish shall be of lead-free, chromate free, alkyd melamine resin base and applied with an electrostatic two-pass system. Finish shall be baked at 350°F.

COIL MODELS HS108A - HS136A

Coil is a serpentine design with seamless copper tubing. Aluminum fins shall have drawn collars to assure permanent bond with expanded tubes. Tubing connection shall be $^{3}/_{8}$ " copper tubing, type "M" (.500 O.D.). Coils shall be factory tested at 250 P.S.I.

MOTORS

Motors shall be totally enclosed, resilient mounted with class "B" windings. All motors shall be designed for horizontal mounting.

FANS

Fans shall be of the aluminum blade type, designed and balanced to assure maximum air delivery, low motor horsepower requirements and quiet operation.

FAN GUARDS

Fan guards shall be welded steel, zinc plated or painted. To meet CSA and OSHA requirements, units mounted below 8 feet from floor must be equipped with an OSHA fan guard. OSHA fan guards are also available.

AIR DEFLECTION LOUVERS

Units shall be equipped with horizontal, individually adjustable louvers.

Horizontal Unit Heaters Motor Characteristics

TOTALLY ENCLOSED MOTOR TYPE

		KIIIL		
HS Unit Model No.	AMP	MCA	НР	RPM
	115	5/1/60		
18, 24, 108A, 118A	0.8	1.0	16W*	1550
136A	1.4	1.8	1/20*	1000
36, 125A	1.2	1.5	25W*	1550
48, 60, 72	1.4	1.8	1/20*	1000
84, 96, 108	2.2	2.8	1/12*	1000
120, 132,				
144, 156,	4.5	5.6	1/3	1140
180, 204, 240				
280, 300, 360	5.4	6.8	1/2	1100
	230	0/1/60		
18, 24, 108A, 118A	0.4	0.5	16W	1550
136A	1.4	1.8	1/20†	1000
36, 125A	0.6	0.8	25W	1550
48, 60, 72	1.4	1.8	1/20†	1000
84, 96, 108	2.2	2.8	1/12†	1000
120, 132				
144, 156,	4.5	5.6	1/3†	1140
180, 204, 240				
280, 300, 360	5.4	6.8	1/2†	1100
	208-230	/460/3/60		
48, 60, 72, 84,				
96, 108, 120,				
132, 144, 156,	2.6-2.6/1.3	3.3-3.3/1.6	1/2**	1140
180, 204, 240				
280, 300, 360				

^{*}Optional variable speed switch is available.

NOTE 1: All motors are constant speed and operate at top speed as indicated in motor data. Models 18 through 108, including 108A, 118A, 125A and 136A can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models 120 through 360 operate at constant speed as indicated in motor data. All 1/4 H.P. motors are P.S.C.

NOTE 2: Motors under 1/3 H.P. are totally enclosed, frame mounted, 115/1/60 with thermal overload protection and permanently lubricated sleeve bearings with optional speed controller available. 1/3 H.P. (115/1/60) motors are open frame constant speed with thermal over-load protection and ball bearings. 1/3 H.P. $(230\mathrm{V})$ and 1/2 H.P. $(230\mathrm{V})$ motors are open frame constant speed with thermal overload protection and ball bearings.

EXPLOSION PROOF WITH THERMAL OVERLOAD MOTOR TYPE

HS Unit				
Model No.	AMP	MCA	НР	RPM
7,00		5/1/60		111
48, 60, 72,				
84, 96, 108,	3.7	4.6	1/6	1140
120, 132				
144, 156,	5.4	6.8	1/4	1140
180, 204	<i>)</i> .4	0.0	1/4	1140
240, 280, 300	7.4	9.3	1/3***	1140
360	7.4	9.3	1/2***	1140
	230	0/1/60		
48, 60, 72,				
84, 96, 108,	3.7	4.6	1/6†	1140
120, 132				
144, 156,	5 4	(0	1/64	1140
180, 204	5.4	6.8	1/4†	1140
240, 280, 300	3.7	4.7	1/3***	1140
360	3.7	4.7	1/2***	1140
	230/4	660/3/60		
144, 156,				
180, 204,	2 2/1 1	2 9 /1 /	1 /2	1140
240, 280,	2.2/1.1	2.8/1.4	1/3	1140
300, 360				

^{***}These motors are 115/230 volts.

†230/1/60 unit has 115/1/60 motor supplied with field installed stepdown transformer.

NOTE 3: 1/3 and 1/2 H.P. motors are available as 230V single and 3 phase in open frame and explosion-proof housings, all available as options. 1/3 and 1/2 H.P. motors operate at single speed only.

NOTE 4: Stated AMP draw is Full Load Amp (FLA). AMP draw varies by motor manufacturer \pm .2 AMPS. Verify FLA per unit motor data plate.

CAUTION: Select appropriate AMP and MCA for the multiple voltage motors. For example, the AMP and MCA for Models 360 with a 460 volt Totally Enclosed motor is 1.3 and 1.6 respectively.

^{**}These motors are without thermal overload protection

Vertical Unit Heaters Features and General Specifications

Sterling vertical projection unit heaters provide heat where it is required in commercial and industrial applications. Mounted near the ceiling, this unit provides air circulation and reduces stratification, without occupying otherwise usable building space. Units can be provided with an optional diffuser for patterned discharge, or, without a diffuser for higher velocity 'spot' heating near doorways and other highloss areas.

Sterling vertical units are available in fifteen sizes for steam or hot water heating. Steam capacities range from 140 to 2,580 E.D.R. (26.0 to 705 MBH) (2 PSI w/60° E.A.T.). Hot water capacities range from 18.9 to 519.4 MBH (200° E.W.T./20° drop w/60° E.A.T.).

CONSTRUCTION

The unit casing is formed by two square steel plates. The bottom plate forms an orifice for air delivery. Air ports are stamped in the top plate of standard units for easy conversion of low output units.

FAN

Sterling aluminum blade fans are quiet, factory balanced and sturdy for standard or sparkproof applications.

HEATING ELEMENT

Hot water-steam coils are rectangular 3 or 4-sided, one-pass, multiple circuit, with aluminum fins mechanically bonded to the tubes. Standard coils are seamless copper tubing. Coils tested at 375 psi under water. Supply and return connections are steel pipe. Standard coils have .025 copper tubing suitable for use on steam pressure to 75 psi or hot water up to 225 psi or 325°F.

MOTORS

Standard motors are 115/60/1, totally enclosed, with thermal overload protection for all units through size VS-280. Standard motors for sizes 40, 62 and 77 are shaded pole, sleeve bearing. The VS-104 motor is permanent split capacitor type with sleeve bearings. Motor for unit sizes 125 through 285 are permanent split capacitor types with permanently lubricated ball bearings. Motors used on unit sizes 317 through 700 are 230/460/60/3, totally enclosed, with permanently lubricated ball bearings. Unit sizes smaller than 317 are also available with 230/460/60/3 motors.

All motors fractional H.P. and integral H.P., have Class "B" insulation. The 115/60/1 motors used as standard on unit sizes 40 through 104 can be operated at multiple speeds with the addition of a solid-state control.

All units are available with 1140 rpm explosion-proof motors.

Vertical Unit Heaters Steam Performance Data

Performance based on 2# steam pressure at heater with air entering @ 60°F.

STANDARD UNITS

		Condensate			Mo	otor	CFM		
Model	\mathbf{BTU}	LBS. Per	Sq. Ft.	Final			_ 70° F	Outlet	Sound
No.	Per Hour	Hour	EDR.	Temp.	H.P.	RPM	Air Basis	Velocity	Rating
VS-40	41,300	43	172	124	1/40	1550	595	877	I
V 3-10	33,600	55	140	131	1/40	1150	436	658	1
VS-62	65,500	68	273	121	1/20	1550	989	1005	II
V 5-02	52,800	55	220	129	1/20	1150	706	727	
VS-77	80,600	83	336	122	1/20	1550	1200	1220	II
V 3-7 /	65,100	67	271	130	1/20	1150	858	894	11
VS-104	101,800	106	424	123	1/8	1070	1490	980	II
V 3-104	87,900	91	366	129	1/6	850	1180	783	11
VS-125	124,400	129	518	124	1/6	1100	1790	1170	III
VS-144	152,000	157	633	123	1/6	1100	2220	1045	III
VS-164	173,000	179	720	121	1/6	1100	2620	1230	IV
VS-200	210,200	208	838	118	1/4	1100	3200	1495	III
VS-237	249,800	260	1040	115	1/4	1100	4180	1205	IV
VS-285	283,800	294	1180	119	1/2	1100	4430	1275	IV
VS-317	333,400	345	1390	119	3/4	1140	5210	1500	IV
VS-367	386,000	400	1610	118	3/4	1140	6140	1770	IV
VS-495	496,000	514	2070	117	1-1/2	1160	8020	1640	IV
VS-585	585,000	605	2440	117	1-1/2	1160	9450	1930	IV
VS-700	705,000	729	2940	119	3	1165	11,000	2250	IV

NOTES

Constant speed units are rated at capacities shown in regular type; capacities shown in italic faced type apply only to units with multi-speed motors.

^{**}To determine BTU per hour capacities at various steam pressures and entering air temperatures, use conversion factors from table A, page 20. Final temperatures at new conditions can be calculated by applying basic formula.

Vertical Unit Heaters Steam Performance Data

Performance based on 2# steam pressure at heater with air entering @ 60°F.

LOW OUTPUT UNITS STANDARD MODEL "VS" UNITS WITH ALL AIR PORTS OPEN

Model	BTU	Condensate LBS. Per	Sq. Ft.	Final	Мо	tor	CFM 70° F	Outlet	Sound
No.	Per Hour	Hour	EDR.	Temp.	H.P.	RPM	_ /o r Air Basis	Velocity	Rating
VC 401	34,800	36	145	108	1.740	1550	668	950	т.
VS-40L	26,000	27	108	111	1/40	1150	470	672	I
VS-62L	57,200	59	238	104	1/20	1550	1200	1190	I
V 5-02E	45,800	48	191	109	1/20	1150	862	858	
VS-77L	68,000	71	283	106	1/20	1550	1360	1350	II
	55,000	57	229	111	1,20	1150	995	992	
VS-104L	85,400	89	356	108	1/8	1070	1640	1050	II
	71,200	74	296	111		850	1290	827	
VS-125L	111,000	115	462	107	1/6	1100	2180	1390	III
VS-144L	125,000	130	524	109	1/6	1100	2360	1080	III
VS-164L	149,000	154	620	107	1/6	1100	2920	1340	IV
VS-200L	176,800	183	736	108	1/4	1100	3390	1560	III
VS-237L	214,900	224	895	104	1/4	1100	4500	1270	IV
VS-285L	251,800	260	1050	106	1/2	1100	5040	1420	IV
VS-317L	291,000	302	1210	107	3/4	1140	5700	1610	IV
VS-367L	344,000	356	1430	108	3/4	1140	6600	1870	IV
VS-495L	428,000	446	1785	102	1-1/2	1160	9380	1860	IV
VS-585L	515,000	533	2140	106	1-1/2	1160	10,300	2060	IV
VS-700L	620,000	642	2580	108	3	1165	11,900	2380	IV

NOTES:

Constant speed units are rated at capacities shown in regular type; capacities shown in italic faced type apply only to units with multi-speed motors.

^{**}To determine BTU per hour capacities at various steam pressures and entering air temperatures, use conversion factors from table A, page 20. Final temperatures at new conditions can be calculated by applying basic formula.

Vertical Unit Heaters Steam Calculations and Correction Factors

		EXAMPLE: – UNIT: VS-40 Steam Pressure 10 PSI Entering Air Temp 40°F
I. CAPACITY A. For 2 lbs. steam, 60° entering air	Read output directly from table on p. 18 & 19: 41,300 BTU/HR.	
B. For higher steam pressures and/or E.A.T.'s above or below 60°F	Multiply output from table on p. 18 & 19 by appropriate correction factor from table A (below).	41,300 x 1.27 = 52,451 BTU/HR
II. FINALAIR TEMPERATURE A. For 2 lbs. steam, 60° entering air	Read temperature directly from table on p. 18 & 19: 124°F.	
B. For capacities calculated in I.B. (above)	Output from I.B. 1.085 x CFM from Table p. 18 + E.A.T. = Final Air Temp.	$\frac{52.451}{1.085 \times 595} + 40 = 121.0$ °F
III. FINALAIR VOLUME A. For 2 lbs. steam, 60° entering air	$\frac{460 + \text{Final Air Temp from table on p. 18}}{530} \times \frac{\text{Nom. CFM}}{\text{from}} = \frac{\text{Air}}{\text{Table on p. 18}} \text{ Volume}$	$\frac{460+124}{530} \times 595 = 655 \text{ CFM}$
B. For final air temperatures calculated In II. B. (above)	$\frac{460 + \text{Final Air Temp from II.B.}}{530} \times \frac{\text{Nom. CFM}}{\text{from}} = \frac{\text{Air}}{\text{Table on p. 18}} \text{Volume}$	$\frac{460+121.0}{530} \times 595 = 652 \text{ CFM}$
IV. CONDENSATE PER HOUR A. For 2 lbs. steam, 60° entering air	Read lbs. per hour from table on p. 18 & 19: 43 LBS./HR.	
B. For capacities calculated in I.B. (above)	Output from I.B. Latent Heat From Table B = lbs. per hour of condensate	$\frac{52,451}{953}$ = 55.0 LBS./HR.

TABLE A — STEAM CORRECTION FACTORS BASED ON 2 LBS. STEAM 60° E.A.T.

ENTERING A	JR		STEAM F	PRESSURE	— LBS.	PER SQ.	IN. (SAT	URATED)		
TEMPERATUI	RE 0	2	5	10	15	20	30	40	50	75
30°	1.18	1.22	1.27	1.34	1.40	1.45	1.53	1.61	1.67	1.79
40°	1.11	1.15	1.20	1.27	1.32	1.37	1.46	1.53	1.59	1.71
50°	1.03	1.07	1.12	1.19	1.25	1.30	1.39	1.46	1.52	1.64
60°	0.96	1.00	1.05	1.12	1.18	1.23	1.32	1.39	1.45	1.57
70°	0.90	0.93	0.98	1.05	1.11	1.16	1.25	1.32	1.38	1.49
80°	0.83	0.86	0.91	0.98	1.04	1.09	1.18	1.25	1.31	1.42
90°	0.76	0.80	0.85	0.91	0.97	1.02	1.11	1.18	1.24	1.36
100°	0.69	0.73	0.78	0.85	0.90	0.96	1.04	1.11	1.17	1.29

TABLE B — PROPERTIES OF SATURATED STEAM

STEAM PRESSURE IN LBS. PER SQUARE INCH GAUGE										
	0	2	5	10	15	20	30	40	50	75
Steam										
Temperature-°F	212.0	218.5	227.1	239.4	249.8	258.8	274.0	286.7	297.7	319.9
Latent Heat										
of Steam	970	966	961	953	946	940	929	920	912	891

NOTE 1: Ratings apply only to free inlet and discharge without diffusers.

NOTE 2: All motors are constant speed and operate at top speed as indicated in motor data. Models 40 through 104 can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models 164 through 700 operate at constant speed as indicated in motor data.

NOTE 3: For specific motor data refer to motor specifications on page 28

NOTE 4: To correct for entering air temperatures, use 1° temperature rise for each foot in mounting height. As an example, 60° air is required at work area (5 ft. above floor) units are to be mounted at (20 ft.) above floor. Mounting height (20 ft.) minus work height (5 ft.) equals differential (15 ft.) or, 15° rise in air temperature at unit air inlet. Correct for actual inlet air temperature of 75° (60° + 15° = 75° E.A.T.) on table A.

STANDARD OUTPUT UNITS

Model No.	Water Temp. Drop	Output BTU/HR	G.P.M.	H ₂ O Press. Drop	Final Air Temp.	Motor H.P.	R.P.M.	Nominal CFM	Outlet Velocity	Sound Rating
	10°	28.8	5.93	.37	104.6°					
VS-40	20°	22.7	2.34	.06	95.2°	1/40	1550	595	877	I
	30°	16.7	1.15	.02	85.9°					
	10°	22.9	4.71	.24	108.3°					
VS-40*	20°	18.1	1.87	.04	98.3°	1/40	1150	436	658	I
	30°	13.4	.92	.01	88.4°					
	10°	48.1	9.92	1.05	104.8°					
VS-62	20°	39.6	4.08	.19	96.9°	1/20	1550	989	1005	II
	30°	31.1	2.14	.06	89.0°					
	10°	38.1	7.85	.67	109.7°					
VS-62*	20°	31.5	3.24	.13	101.1°	1/20	1150	706	727	II
	30°	24.8	1.71	.04	92.4°					
	10°	58.7	12.11	.98	105.1°					
VS-77	20°	48.4	4.99	.18	97.2°	1/20	1550	1200	1220	II
	30°	38.1	2.62	.05	89.3°					
	10°	46.5	9.59	.63	110.0°					
VS-77*	20°	38.5	3.97	.12	101.2°	1/20	1150	858	894	II
	30°	30.5	2.09	.03	92.7°					
	10°	77.2	15.91	2.06	106.6°					
VS-104	20°	68.3	7.03	.44	101.2°	1/8	1070	1528	980	II
	30°	59.3	4.08	.16	95.8°					
	10°	63.7	13.13	1.43	108.6°					
VS-104*	20°	56.5	5.82	.31	103.1°	1/8	850	1208	783	II
	30°	49.2	3.38	.11	97.6°					
	10°	94.9	19.55	3.04	108.9°					
VS-125	20°	83.7	8.63	.65	103.1°	1/6	1100	1790	1170	III
	30°	72.5	4.98	.23	97.3°					
	10°	117.6	24.24	4.32	108.8°					
VS-144	20°	105.2	10.84	.96	103.7°	1/6	1100	2220	1045	III
	30°	92.8	6.38	.36	98.5°					

**Performance based on 200° EWT, 20° T.D., 60° E.A.T. Performance at 10° & 30° T.D. is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 25.

*Speed controller option is required for reduced ratings.

STANDARD OUTPUT UNITS

Model No.	Water Temp. Drop	Output BTU/HR	G.P.M.	H ₂ O Press. Drop	Final Air Temp.	Motor H.P.	R.P.M.	Nominal CFM	Outlet Velocity	Sound Rating
	10°	132.4	27.29	3.67	106.6°					
VS-164	20°	118.6	12.22	.81	101.7°	1/6	1100	2620	1230	IV
	30°	104.8	7.20	.30	96.9°					
	10°	156.2	32.20	5.02	105.0°					
VS-200	20°	139.7	14.40	1.11	100.2°	1/4	1100	3200	1495	III
	30°	123.2	8.47	.41	95.5°					
	15°	188.9	25.95	3.92	101.8°					
VS-237	20°	180.1	18.56	2.10	99.9°	1/4	1100	4162	1205	IV
	30°	162.7	11.18	.82	96.0°	,				
	15°	215.4	29.60	5.02	104.8°					
VS-285	20°	205.4	21.17	2.68	102.7°	1/2	1100	4430	1275	IV
	30°	185.3	12.73	1.04	98.5°	,				
	15°	254.9	35.03	6.88	105.1°					
VS-317	20°	242.9	25.03	3.67	103.0°	3/4	1140	5210	1500	IV
	30°	218.9	15.04	1.42	98.7°	5,				
	15°	294.7	40.49	6.60	104.2°					
VS-367	20°	280.8	28.94	3.52	102.2°	3/4	1140	6140	1770	IV
	30°	253.1	17.39	1.36	98.0°					
	15°	_	_	_	_					
VS-495	20°	368.1	37.93	5.81	102.3°	1-1/2	1160	8020	1640	IV
	30°	333.6	22.92	2.29	98.3°					
	15°	451.2	62.00	8.78	104.0°					
VS-585	20°	431.1	44.43	4.72	102.0°	1-1/2	1160	9450	1930	IV
	30°	391.0	26.86	1.86	98.1°	•				
	15°	_	_	_	_					
VS-700	20°	519.4	53.52	5.29	103.5°	3	1165	11,000	2250	IV
	30°	470.9	32.35	2.08	99.5°	-		,		

^{**}Performance based on 200° EWT, 20° T.D., 60° E.A.T. Performance at 10° & 30° T.D. is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 25.

LOW OUTPUT UNITS STANDARD MODEL "VS" UNITS WITH ALL AIR PORTS OPEN

Model No.	Water Temp. Drop	Output BTU/HR	G.P.M.	H ₂ O Press. Drop	Final Air Temp.	Motor H.P.	R.P.M.	Nominal CFM	Outlet Velocity	Sound Rating
	10°	23.9	4.92	.26	92.9°					
VS-40L	20°	18.9	1.95	.04	86.1°	1/40	1550	668	950	I
	30°	14.0	.96	.01	79.3°					
	10°	16.7	3.45	.13	92.8°					
VS-40L*	20°	13.5	1.39	.02	86.4°	1/40	1150	470	672	I
	30°	_	_	_	_					
	10°	41.5	8.56	.80	91.9°					
VS-62L	20°	34.2	3.53	.15	86.3°	1/20	1550	1200	1190	II
	30°	27.0	1.85	.04	80.7°					
	10°	32.4	6.68	.50	94.7°					
VS-62L*	20°	26.9	2.77	.09	88.7°	1/20	1150	862	858	II
	30°	21.3	1.46	.03	82.8°					
	10°	48.9	10.09	.69	93.2°					
VS-77L	20°	40.5	4.17	.13	87.4°	1/20	1550	1360	1350	II
	30°	32.0	2.20	.04	81.7°					
	10°	38.5	7.94	.44	95.7°					
VS-77L*	20°	32.0	3.29	.08	89.6°	1/20	1150	995	992	II
	30°	25.4	1.75	.02	83.5°					
	10°	63.7	13.13	1.43	93.5°					
VS-104L	20°	56.5	5.82	.31	89.7°	1/8	1070	1752	1050	II
	30°	49.2	3.38	.11	85.9°					
	10°	54.5	11.24	1.06	93.5°					
VS-104L*	20°	48.5	4.99	.23	89.8°	1/8	850	1499	827	II
	30°	42.4	2.91	.08	86.1°					
	10°	83.7	17.24	2.40	95.4°					
VS-125	20°	73.9	7.62	.51	91.3°	1/6	1100	2180	1390	III
	30°	64.2	4.41	.18	87.1°					
	10°	95.4	19.66	2.92	97.3°					
VS-144L	20°	85.5	8.81	.65	93.4°	1/6	1100	2360	1080	III
	30°	75.6	5.20	.24	89.5°					

**Performance based on 200° EWT, 20° T.D., 60° E.A.T. Performance at 10° & 30° T.D. is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 25.

*Speed controller option is required for reduced ratings.

LOW OUTPUT UNITS STANDARD MODEL "VS" UNITS WITH ALL AIR PORTS OPEN

	Water			H,O	Final					
Model No.	Temp. Drop	Output BTU/HR	G.P.M.	Press. Drop	Air Temp.	Motor H.P.	R.P.M.	Nominal CFM	Outlet Velocity	Sound Rating
	10°	112.3	23.15	2.70	95.4°					
VS-164L	20°	100.7	10.38	.60	91.8°	1/6	1100	2920	1340	IV
	30°	89.2	6.13	.22	88.1°					
	10°	135.8	27.98	3.85	96.9°					
VS-200L	20°	121.8	12.52	.85	93.0°	1/4	1100	3390	1560	III
	30°	107.3	7.37	.32	89.2°					
	10°	168.5	34.72	6.75	94.5°					
VS-237L	20°	153.8	15.85	1.56	91.4°	1/4	1100	4507	1270	IV
	30°	139.1	9.56	.61	88.4°					
	10°	188.9	25.95	3.92	94.5°					
VS-285L	20°	180.1	18.56	2.10	92.9°	1/2	1100	5040	1420	IV
	30°	162.7	11.18	.82	89.7°					
	10°	220.9	30.35	5.26	95.7°					
VS-317L	20°	210.6	21.70	2.81	94.1°	3/4	1140	5700	1610	IV
	30°	189.9	13.05	1.09	90.7°	2,				
	10°	260.7	35.82	5.24	96.4°					
VS-367L	20°	248.5	25.61	2.80	94.7°	3/4	1140	6600	1870	IV
	30°	224.2	15.40	1.09	91.3°	2,				
	10°	_	_	_	_					
VS-495L	20°	310.5	32.00	4.23	90.5°	1-1/2	1160	9380	1860	IV
	30°	281.7	19.35	1.67	87.7°			, ,		
	10°	394.4	54.19	6.83	95.3°					
VS-585L	20°	377.0	38.85	3.68	93.7°	1-1/2	1160	10,300	2060	IV
	30°	342.2	23.51	1.45	90.6°	•		/-		
	10°	_	_	_	_					
VS-700L	20°	453.7	46.76	4.11	95.1°	3	1165	11,900	2380	IV
	30°	411.7	28.28	1.62	91.9°			/2		

^{**}Performance based on 200° EWT, 20° T.D., 60° E.A.T. Performance at 10° & 30° T.D. is also shown. For capacities at other conditions, use the correction multipliers in the tables on page 25.

Vertical Unit Heaters Hot Water Calculations and Correction Factors

		EXAMPLE: – VS-40 UNIT:
I. CAPACITY @ 20° TD: A. For 200° EWT, 60° EAT	Read output directly from tables on p. 21 - 24, 22,700 BTU/HR (Ref., Std. VS-40, p. 21).	
B. For EWT and/or EAT above or below Standard	Multiply output from table on p. 21 - 24 by factor from table A (below).	22,700 x .878 = 19,931 BTU/HR.
II. CAPACITY AT OTHER TD's A. For TD's from 5 to 60°F	Multiply output obtained in IA. or IB. (above) by appropriate factor from Table B (below)	IA - 22,700 x 1.15 = 26,105 BTU/HR. - OR - IB - 19,931 x 1.15 = 22,921 BTU/HR.
III. GPMAT OTHER TD's A. For TD's from 5 to 60°F	Multiply GPM of unit for 20° TD, from table on p. 21 by appropriate factor from table B (below).	2.34 x 2.30 = 5.38 GPM (Applies only to units with Std. 200° EWT, 60° EAT.) For all others calculate using formula – GPM = $\frac{BTU}{500 \text{x TD}}$
IV. PRESSURE LOSS AT OTHER TD'S A.For TD's from 5 to 60°F	Multiply P.D. of unit for 20° TD, from table on p. 21 - 24 by appropriate factor from table B (below).	.06 x 5.00 = .30 Ft. H ₂ O

TABLE A — HOT WATER CONVERSION FACTORS BASED ON 200° ENTERING WATER 60° ENTERING AIR 20° TEMPERATURE DROP

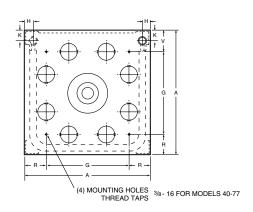
ENTERING AIR			ENTERIN	G WATER	TEMPERAT	URE — 20°	WATER T	EMPERATU!	RE DROP		
TEMPERATURE	100°	120°	140°	160°	180°	200°	220°	240°	260°	280°	300°
30°	0.518	0.666	0.814	0.963	1.120	1.268	1.408	1.555	1.702	1.850	1.997
40°	0.439	0.585	0.731	0.878	1.025	1.172	1.317	1.464	1.609	1.755	1.908
50°	0.361	0.506	0.651	0.796	0.941	1.085	1.231	1.375	1.518	1.663	1.824
60°	0.286	0.429	0.571	0.715	0.857	1.000	1.143	1.286	1.429	1.571	1.717
70°	0.212	0.353	0.494	0.636	0.777	0.918	1.060	1.201	1.342	1.483	1.630
80°	0.140	0.279	0.419	0.558	0.698	0.837	0.977	1.117	1.257	1.397	1.545
90°	0.069	0.207	0.345	0.483	0.621	0.759	0.897	1.035	1.173	1.311	1.462
100°	0	0.137	0.273	0.409	0.546	0.682	0.818	0.955	1.094	1.230	1.371

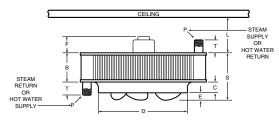
To obtain the BTU capacity for conditions other than those in the basic capacity tables, multiply the basic rating (200° entering water, 60° entering air,) by the proper constant from the above tables.

TABLE B — HOT WATER BTU, GPM AND PRESSURE LOSS FACTORS BASED ON STANDARD CONDITIONS OF 200°F ENTERING WATER 60°F ENTERING AIR & 20°F WATER DROP

USE FACTORS FROM THIS TABLE TO OBTAIN			. 1	ΓEMPERA	TURE D	ROP °F			
APPROXIMATE RESULTS	5	10	15	20	25	30	40	50	60
To obtain BTU for other Water Temperature Drops, multiply basic BTU rating by applicable Factor.	1.25	1.15	1.08	1.00	.94	.90	.83	.76	.72
To obtain GPM for other Water Temperature Drops, multiply basic GPM rating by applicable Factor.*	5.00	2.30	1.44	1.00	.74	.59	.40	.30	.24
To obtain Pressure Loss Feet of Water for other temperature Drops, multiply Basic loss at 20° drop by Factor.	10.00	5.00	2.00	1.00	.60	.40	.20	.13	.07

*TABLE C — MINIMUM WATER FLOW — GPM


MODEL No.	40	62	77	104	144	164	200	237	317	367
MIN. GPM	.55	.55	.55	.55	.82	.82	1.10	1.10	1.10	1.10


*TABLE D — HEATING CAPACITY FACTORS FOR VARIOUS RATES OF WATER FLOW

% of Rated Water Flow	25%	50%	75%	100%	125%	150%	175%
Btu/Hr Heating Capacity	.80	.89	.96	1.00	1.04	1.07	1.10

Vertical Unit Heaters Dimensional Data

(4) MOUNTING HOLES 3/8 - 16 FOR MODELS 104-367
THREAD TAPS 1/2 - 13 FOR MODELS 495-700

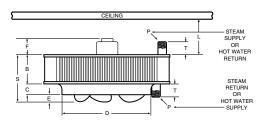


FIGURE A

FIGURE B

FIGURE A — MODEL "VS" UNIT HEATER ROUGHING IN DIMENSIONS

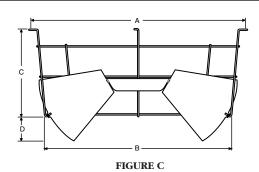

Unit	Fan										L	P						Unit Wt.
Size	Dia.	A	В	С	D	E	F	G	Н	K	(Min.)	(NPT)	R	S	Т	U	V	(lbs.)
40	$11^{1}/_{4}$	18 ¹ / ₄	$4^{5}/8$	11/4	113/4	3/4	4	11	1 ³ /s	1 ⁷ /s	7	11/2	3 ⁵ /8	$6^{5}/8$	23/4	11	3 ⁵ /8	26
62	131/2	211/4	$4^{5}/8$	1 ⁵ /8	14	1	4	14	1 ³ / ₈	1 ⁷ /s	7	11/2	3 ⁵ /8	7 ¹ /8	23/4	14	3 ⁵ /8	32
77	131/2	211/4	61/8	1 ⁵ /s	14	1	3	14	13/8	1 ⁷ /s	7	11/2	35/8	8 ⁵ /8	23/4	14	3 ⁵ /8	36

FIGURE B — MODEL "VS" UNIT HEATER ROUGHING IN DIMENSIONS

Unit	Fan										L	P						Unit Wt.
Size	Dia.	A	В	С	D	E	F	G	Н	K	(Min.)	(NPT)	R	S	T	U	V	(lbs.)
104	163/4	251/4	61/8	2	171/2	$1^{1}/s$	3	17	$1^{3}/8$	23/4	7	11/2	$4^{1}/8$	91/8	23/4	17	$4^{1}/_{8}$	51
125	163/4	25 ¹ / ₄	6 ¹ /s	2	171/2	13/4	3	17	$1^{3}/s$	23/4	7	11/2	$4^{1}/8$	93/4	23/4	17	$4^{1}/_{8}$	54
144	193/4	291/2	61/8	2 ³ /s	20 ⁵ /8	11/4	4	201/2	13/4	31/2	7	2	41/2	9 ⁵ /8	23/4	201/2	$4^{1}/_{2}$	69
164	193/4	291/2	61/8	2 ³ /s	20 ⁵ /s	13/4	4	201/2	13/4	31/2	7	2	$4^{1}/_{2}$	$10^{1}/s$	23/4	201/2	$4^{1}/_{2}$	69
200	193/4	291/2	7 ⁵ /8	2 ³ / ₈	20 ⁵ /s	2	4	201/2	13/4	31/2	7	2	41/2	12	23/4	201/2	$4^{1}/_{2}$	75
237	251/4	371/2	7 ⁵ /8	3	26 ³ / ₈	1	31/2	28	13/4	31/2	7	2	43/4	11 ⁵ /s	23/4	18	93/4	115
285	251/4	371/2	7 ⁵ /8	3	26 ³ / ₈	11/4	31/2	28	13/4	31/2	7	2	43/4	$11^{3}/_{4}$	23/4	18	93/4	120
317	251/4	371/2	7 ⁵ /8	3	26 ³ / ₈	21/8	4	28	13/4	31/2	7	2	43/4	123/4	23/4	18	93/4	120
367	251/4	371/2	91/8	3	26 ³ / ₈	2	31/2	28	13/4	31/2	7	2	43/4	14 ¹ /s	23/4	18	93/4	126
495	30	42	91/8	31/2	311/4	1 ⁵ /s	3	30	21/4	$4^{1}/_{4}$	7	21/2	6	141/4	3	30	6	267
585	30	42	12 ¹ /s	31/2	311/4	21/8	3	30	21/4	$4^{1}/_{4}$	7	21/2	6	173/4	3	30	6	210
700	30	42	13 ⁵ /s	31/2	311/4	3	4	30	21/4	41/4	7	21/2	6	201/4	3	30	6	260

FIGURE C
LOUVER CONE DIFFUSER ROUGHING IN DIMENSIONS

Unit					No. of
Size	A	В	С	D	Louvers
40	$16^{1/2}$	141/4	61/2	2 ⁵ /s	8
62 & 77	20	17	8	3 ¹ / ₈	8
104 & 125	241/4	21	93/4	315/16	8
144, 164 & 200	$28^{3}/s$	243/4	$11^{1}/_{2}$	$4^{5}/8$	8
237, 285, 317 & 367	351/2	311/2	133/4	4	12
495, 585, 700	411/2	371/4	17	43/4	12

Vertical Unit Heaters Mounting Heights & Throws, Technical Data

MAXIMUM MOUNTING HEIGHT IN FEET FOR MODEL "VS" UNIT HEATERS WITH AND WITHOUT LOUVER CONE DIFFUSER

Unit	5	Steam 1	Pressu	re (PSI)	Unit	S	team l	Pressu	re (PSI)
Size	2	5	10	50	75	Size	2	5	10	50	75
NC 40	10.5	10.0	10.0	9.0	8.0	V/C 1 // /T	18.0	17.5	17.5	15.0	14.0
VS-40	12.5	12.0	12.0	11.0	10.0	VS-144L	22.5	22.0	21.5	18.5	18.0
VS-40*	8.0	8.0	8.0	8.0	8.0	VS-164	18.0	17.5	17.0	14.5	14.0
V 5-40	9.0	8.5	8.5	8.0	8.0	V5-104	22.5	22.0	21.5	19.0	18.0
VS-40L	12.5	12.0	12.0	10.5	9.5	VS-164L	22.0	21.5	21.0	18.5	17.5
V 3-40L	14.5	14.0	13.5	12.0	11.5	V3-104L	27.5	27.0	26.5	23.5	22.5
VS-40L*	9.0	8.5	8.5	8.0	8.0	VS-200	22.0	21.5	21.0	18.5	17.5
V 5-40L	10.5	10.0	10.0	9.0	8.5	¥3-200	27.5	27.0	26.5	24.0	23.0
VS-62	12.0	11.5	11.5	10.0	9.5	VS-200L	25.5	25.0	24.5	22.0	21.0
V 5-02	14.5	14.0	14.0	12.0	11.5	V 5-200L	31.5	31.0	30.5	27.0	26.0
VS-62*	9.5	9.0	9.0	8.0	8.0	VS-237	20.0	19.5	19.0	17.0	16.0
V002	11.5	11.0	11.0	9.5	9.0	10 237	25.0	24.0	23.5	20.5	19.5
VS-62L	15.0	14.5	14.5	12.5	12.0	VS-237L	24.0	23.5	23.0	20.0	19.0
1002E	19.0	18.5	18.5	16.5	16.0	VO 23/E	29.5	28.5	28.0	24.5	23.5
VS-62L*	11.5	11.0	11.0	9.5	8.0	VS-285	21.0	20.5	20.0	17.5	17.0
7002E	14.0	13.5	13.5	12.0	11.5	10 20 9	26.0	25.5	25.0	22.0	21.0
VS-77	15.0	14.5	14.0	12.0	11.5	VS-285L	25.5	25.0	24.5	21.0	20.0
V O / /	18.5	18.0	17.5	15.5	13.5	10 2 0) 2	32.0	31.0	30.0	26.0	25.0
VS-77*	11.0	10.5	10.5	9.0	8.5	VS-317	24.0	23.0	22.0	20.0	19.0
	13.5	13.0	13.0	11.5	11.0	, 0 3 1 7	30.0	29.0	28.0	25.0	24.0
VS-77L	18.0	17.5	17.5	15.0	14.0	VS-317L	29.0	28.5	28.0	25.0	24.0
.0,,2	22.0	21.0	21.0	19.0	18.0	, 0 31, 2	36.0	35.0	34.0	30.0	29.0
VS-77L*	13.0	12.5	12.0	11.0	10.5	VS-367	28.5	28.0	27.5	24.0	23.0
, ,	17.0	16.5	16.0	14.0	13.5		35.5	35.0	34.0	30.0	29.0
VS-104	14.0	13.5	13.0	11.5	11.0	VS-367L	32.5	31.5	30.5	27.5	26.5
.0101	17.0	16.5	16.0	14.0	13.5		41.0	40.0	39.0	35.0	33.5
VS-104*	11.0	10.5	10.5	9.5	9.0	VS-495	29.5	29.0	28.5	25.0	24.0
	13.5	13.0	13.0	12.0	11.5		36.5	36.0	35.5	32.0	30.5
VS-104L	17.5	17.0	16.5	15.0	14.5	VS-495L	35.0	34.0	33.0	29.0	28.0
	21.5	21.0	20.5	18.5	17.5		43.5	42.5	41.5	35.0	34.0
VS-104L*	15.0	14.5	14.5	13.0	12.5	VS-585	34.0	33.0	32.0	28.0	27.0
.01012	18.5	18.0	18.0	16.0	15.0		42.5	41.5	40.5	36.0	34.5
VS-125	16.0	15.5	15.5	14.0	13.5	VS-585L	37.0	36.0	35.0	31.0	30.0
· - /	19.5	19.0	18.5	17.0	16.0		46.5	45.5	44.5	39.0	37.0
VS-125L	21.0	20.5	20.0	17.5	17.0	VS-700	38.5	37.5	36.5	32.0	30.5
	26.0	25.5	25.0	22.5	21.5	7 - 7	48.0	47.0	46.0	40.0	39.0
VS-144	15.5	15.0	14.5	13.0	12.0	VS-700L	42.5	41.5	40.5	35.0	33.5
	19.0	18.5	18.0	16.0	15.5		53.0	52.0	51.0	44.0	42.0

NOTES:

- * = Low Speed
- L = Model "VS" low output model with all air ports open

Figures in bold face show maximum mounting height with louver cone diffusers set vertically.

To meet CSA and OSHA requirements, units mounted below 8 feet from floor must be equipped with an OSHA fan guard. Please see page 31 for ordering information.

Above table based on 60°F entering air temperature. In providing for the use of diffusers, it must be remembered that adjustment of a LCD to deflect air toward horizontal immediately lowers the mounting height limit.

MAXIMUM SPREAD IN FEET

Unit Size: VS-	40	62	77	104	125	144	164	200	237	285	317	367	495	585	700
Spread (Ft.)	15	17	20	24	26	27	28	32	35	37	45	50	54	57	60

NOTE: The "spread" is the diameter of the comfort zone at floor level. Projected by the Model "VS" unit without the louver cone diffuser. Based on two pounds steam pressure and $60^{\circ}F$ entering air.

TECHNICAL DATA

Propylene Glycol, when sizing equipment for systems that will utilize a Propylene Glycol solution consider the factors shown on page 10.

Vertical Unit Heaters Motor Characteristics

TOTALLY ENCLOSED MOTOR TYPE

MOTOR TIPE									
VS Unit Model No.	AMP	MCA	HP	RPM					
115/1/60									
40	1.23**	1.6	1/40*	1550					
62, 77	2.1**	2.6	1/20*	1550					
104	1.2**	1.5	1/8*	1070					
125, 144, 164	2.3**	2.9	1/6	1100					
200, 237	3.6**	4.5	1/4	1100					
285	5.4**	6.8	1/2	1100					
208-230/460/3/60									
40, 62, 77,									
104, 125,	0.98-1.1/0.55	1.2-1.4/0.7	1/6	1140					
144, 164									
200, 237	1.2-1.4/0.7	1.5-1.8/0.9	1/4	1140					
285	1.8-2.0/1.0	2.3-2.5/1.3	1/2	1140					
317, 367	3.1-3.2/1.6	3.9-4.0/2.0	3/4	1140					
495, 585	5.3-5.0/2.5	6.6-6.3/3.1	1-1/2	1160					
700	9.9-9.8/4.9	12.4-12.3/6.1	3	1165					
	575	5/3/60							
40, 62, 77,									
104, 125,	0.6	0.8	1/3	1140					
144, 164,	0.6								
200, 237									
285	0.8	1.0	1/2	1140					
317, 367	1.3	1.6	3/4	1140					
495, 585	2.0	2.5	1-1/2	1160					
700	3.8	4.7	3	1165					

^{*}Optional variable speed switch is available.

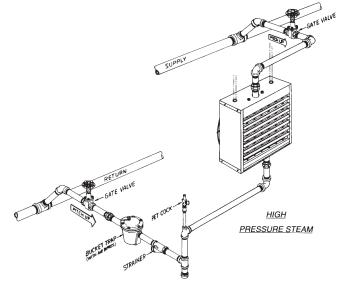
EXPLOSION PROOF WITH THERMAL OVERLOAD MOTOR TYPE

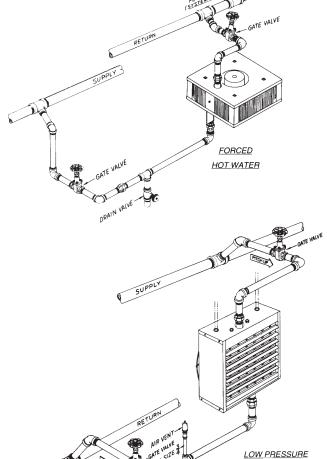
VS Unit Model No.	AMP	MCA	НР	RPM					
	115/1/60								
40, 62, 77,									
104, 125	3.8	4.8	1/6	1140					
144, 164									
200, 237	4.4	5.5	1/4	1140					
285	7.8	9.8	1/2	1140					
208-230/460/3/60									
40, 62, 77,									
104, 125	1.0-1.0/0.5	1.3-1.3/0.6	1/6	1140					
144, 164									
200, 237	1.1-1.1/0.55	1.4-1.4/0.7	1/4	1140					
285	1.9/0.95***	2.4/1.2	1/2	1140					
317, 367	3.1-3.2/1.6	3.9-4.0/2.0	3/4	1145					
495, 585	5.0/2.5***	6.5/3.3	1-1/2	1150					
700	10.0/5.0***	12.5/6.3	3	1150					

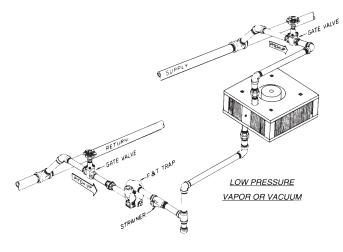
^{***} These motors are 230/460 volts only.

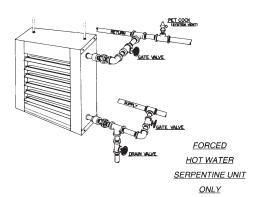
NOTE 1: All motors are constant speed and operate at top speed as indicated in motor data. Models through 1/8 H.P. can be run at reduced speed with addition of optional variable speed switch. This switch is factory-calibrated for low and high speed ratings, with intermediate speeds infinitely controllable. Models 164 through 700 operate at constant speed as indicated in motor data.

NOTE 2: Stated draw is Full Load (FLA). AMP draw varies by motor manufacturer \pm .2 AMPS.

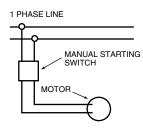

CAUTION: Select appropriate AMP and MCA for the multiple voltage motors. For example, the AMP and MCA for Model 40 with a 230 volt Totally Enclosed motor is 1.1 and 1.4 respectively.

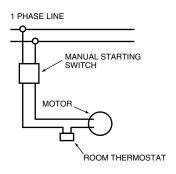

^{**} These motors have automatic thermal overload protection or impedance protection.

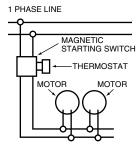

Horizontal and Vertical Unit Heater Piping and Installation

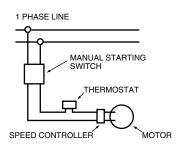

The illustrations below depict different typical piping configurations. Proper selection should be based on the operational characteristics of the source supply. For selection and sizing of piping, traps, filters and other piping specialities, ASHRAE guides and specialty manufacturer's literature should be consulted. We assume that the type and total design of systems has been selected or approved by a qualified engineer. The installation and service manual should be consulted for further information on installation, operation, drainage and system cleaning.

Piping and installation is typical for both horizontal and vertical unit heaters – except side connections (below right).

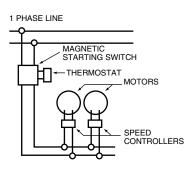


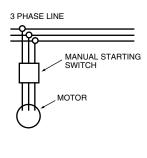


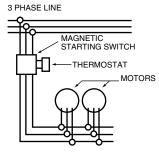



STEAM GRAVITY

Wiring Diagrams and Warranty






MANUAL CONTROL WITH SINGLE PHASE MOTOR

THERMOSTATIC CONTROL WITH MANUAL STARTER

THERMOSTATIC CONTROL USING MAGNETIC STARTER OPERATING SEVERAL UNITS SPEED CONTROLLER WITH MANUAL STARTING SWITCH

1. For internal wiring and overload protection on all starters, consult the control manufacturer for details.

2. When using thermostatic control with a manual starter, be sure that the electrical rating of the thermostat is sufficient to carry the motor current.

SPEED CONTROLLERS WITH MAGNETIC STARTING SWITCH FOR OPERATING SEVERAL UNITS MANUAL CONTROL WITH THREE PHASE MOTOR

THERMOSTATIC CONTROL
OF SEVERAL THREE
PHASE UNITS

3. Refer to pages 16 and 28 for motor characteristics of individual unit heaters.

STEAM/HOT WATER UNIT HEATER WARRANTY

The products in this catalog are warranted by Sterling to be free from defects in material and workmanship for a period of one (1) year from the date of shipment from Sterling's plant. Sterling's liability under this warranty is limited to replacing or repairing at our option, F.O.B. our plant any defective component or assembly returned to our factory prepaid and with proper return authorization documents. All repairs or replacements are made subject to factory inspection. No liability is accepted for consequential damages, freight or labor charges.

This warranty does not cover damages or failure due to improper installation or piping, corrosive atmospheric conditions, misuse or negligence by others.

TERMS OF SALE

- No obligation is assumed by this corporation to sell to anyone holding this book any of the items listed herein.
- An order is not a valid order until acknowledged by Sterling.
- Sterling reserves the right to make changes in design, material or accessory vendors without notice and without obligation to incorporate such changes in products of prior manufacture.
- Additional sales and freight terms are contained in the price list.

HORIZONTAL HYDRONIC UNIT HEATERS MODEL NUMBER DESCRIPTION

1, 2 - Unit Type [UT]

HS - Horizontal

3 - Coil Type [CT]

A - Serpentine

B - Standard (Header Type)

4, 5, 6 - Capacity [CA]

Coil Type [A] Serpentine

108 - 8,030 BTU/HR 125 - 24,800 BTU/HF 118 - 18 400 BTU/HB 136 - 35,900 BTU/HR *Based on 200° EWT, 60° EAT, 20° T.D.

Coil Type [B] Standard** 018 - 18,000 BTU/HR

132 - 132.000 BTU/HR 024 - 24,000 BTU/HR 144 - 144,000 BTU/HR 036 - 36 000 BTU/HB 156 - 156 000 BTU/HR 048 - 48,000 BTU/HR 180 - 180,000 BTU/HR 060 - 60,000 BTU/HR 204 - 204,000 BTU/HR 072 - 72.000 BTU/HR 240 - 240.000 BTU/HR 084 - 84,000 BTU/HR 280 - 280,000 BTU/HR **096 -** 96,000 BTU/HR 300 - 300,000 BTU/HR 108 - 108.000 BTU/HR 360 - 360,000 BTU/HR 120 - 120,000 BTU/HR **Based on 2 psi steam

7 - Supply Voltage [SV]

1 - 115/1/60 5 - 230/3/60 **3 -** 230/1/60 6 - 460/3/60 4 - 208/3/60 7 - Other

8 - Motor Type [MT]

- 1 Standard Moto
- 2 Explosion Proof

9 - Accessories [AS]

All Field Installed Accessories are to be entered as a separate line item using new catalog number which utilizes "AS" as a prefix. i.e: G6 becomes AS-G6.

FACTORY INSTALLED

- M6 OSHA Fan Guard (1 Phase Motors Only) M9 - Standard Fan Guard
 - (3 Phase or Explosion Proof Motors Only)

V1 - Phenolic Coating (Air Dried)

V2 - Phenolic Coating (Baked))

FIELD INSTALLED (AS-G6 - Locking Thermostat Cover

L2-1 - 115/230V Single Phase

Disconnect Switch - Unfused L2-2 - 208/230V 3 Phase

Disconnect Switch - Unfused L2-3 - 460/575V 3 Phase

Disconnect Switch - Unfused

Q6H - Vertical Louvers

U1 - Line Voltage Stat "Off/Auto Switch"

U2 - Line Voltage Stat "Auto/Off/Fan Switch"

U3 - Line Voltage Stat "Auto/Off/Fan Switch Heavy Duty"

U4 - Celsius Line Voltage Thermostat

U5 - Strap on Hot Water Control

U6 - Steam Pressure Control (Open on rise in pressure)

U7 - Steam Pressure Control

(Close on rise in pressure) U8 - 5.0 Amp Speed Control Switch

(Capacities [CA] 18-108 Only)

U9 - Manual Starters - 1 Phase

U10 - Manual Starters - 3 Phase

VERTICAL HYDRONIC UNIT HEATERS MODEL NUMBER DESCRIPTION

1, 2 - Unit Type [UT]

3 - Coil Type

B -Standard 4, 5, 6 - Capacity [CA]

040 - 40,000 BTU/HR 237 - 237,000 BTU/HR 062 - 62,000 BTU/HR 285 - 285,000 BTU/HR 077 - 77.000 BTU/HR 317 - 317.000 BTU/HR 104 - 104,000 BTU/HR 367 - 367,000 BTU/HR 125 - 125,000 BTU/HR 495 - 495,000 BTU/HR 144 - 144,000 BTU/HR 585 - 585,000 BTU/HR 164 - 164,000 BTU/HR 700 - 700,000 BTU/HR 200 - 200,000 BTU/HR

7 - Supply Voltage [SV]

6 - 460/3/60 **1 -** 115/1/60 4 - 208/3/60 7 - 575/3/60 5 - 230/3/60 Z - Other

8 - Motor Type [MT]

*Based on 2 psi steam

1 - Standard

2 - Explosion Proof

9 - Accessories [AS]

All Field Installed Accessories are to be entered as a separate line item using new catalog number which utilizes "AS" as a prefix. i.e: G6 becomes AS-G6.

FACTORY INSTALLED M6 - OSHA Fan Guard

V1 - Phenolic Coating (Air Dried) V2 - Phenolic Coating (Baked)

FIELD INSTALLED (AS-

G6 - Locking Thermostat Cover

L2-1 - 115/230V Single Phase Disconnect Switch - Unfused

L2-2 - 208/230V 3 Phase Disconnect Switch - Unfused

L2-3 - 460/575V 3 Phase

Disconnect Switch - Unfused

Q8 - Louver Cone Diffuser

U4 - Celsius Line Voltage Thermostat

U5 - Strap on Hot Water Control

U6 - Steam Pressure Control (Open on rise in pressure)

U7 - Steam Pressure Control

(Close on rise in pressure) U8 - 5.0 Amp Speed Control Switch

(Capacities [CA] 040-104 Only) U9 - Manual Starters - 1 Phase

U10 - Manual Starters - 3 Phase

W1 - T6169C Line Voltage Thermostat w/Subbase (Light Duty)

W2 - T4051A Line Voltage Thermostat

(Heavy Duty)

W4 - Q651A1009 Stat Subbase Only (Used with T4051A1003 for "Off/Auto Switch")

260 NORTH ELM ST. WESTFIELD, MA 01085 (413) 568-9571 • FAX: (413) 562-5311 www.sterlinghvac.com

